Abstract

The spectral radiance between 0.42 μ and 1.1 μ of rubidium and cesium vapor arc lamps was measured for various input powers and vapor pressures. A strong resonance broadening of the resonance lines was observed at high pressures. A strong continuum in the visible is tentatively attributed to Stark broadening of the overlapping lines of the higher order numbers of the 6p-nd and 5d-nf series and to the related series border continua. Data are given for total radiance (0.42–1.1 μ) as function of pressure, for the efficiency vs power input, and the lamp voltage and current.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schmidt, in Proc. Int. Con. Ionization Phenomena Gases, 16th Paris, 7, 17 (1963).
  2. F. E. Gelhaus, S. W. Kessler, Final Tech. Rep. Contract DA-44-009-AMC-1632 (3) (April1967).
  3. R. Rompe, R. Schulz, Z. Physik 112, 691 (1939); Z. Physik 113, 10 (1939).
    [CrossRef]
  4. H. S. Strauss, Final Tech. Rep. Contract PA-44-009-AMC-1049(T) (July1967).
  5. E. F. M. Van der Held, Z. Physik 70, 508, (1931).
    [CrossRef]
  6. A. Unsold, Physik der Sternatmosphaeren (Julius Springer-Verlag, Berlin, 1955).
    [CrossRef]
  7. R. Minkowski, Z. Physik 36, 839 (1926).
    [CrossRef]
  8. J. F. Heard, Monthly Notices Roy. Astron. Soc. 94, 458 (1934).
  9. E. Lindholm, dissertation, Uppsala, 1942.
  10. V. Weisskopf, Physik Z. 34, 1 (1933).
  11. “Experimental Transition Probabilities for Spectral Lines of Seventy Elements,” NBS Monograph 53 (1962).
  12. H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964).
  13. H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

1969 (1)

H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

1963 (1)

K. Schmidt, in Proc. Int. Con. Ionization Phenomena Gases, 16th Paris, 7, 17 (1963).

1939 (1)

R. Rompe, R. Schulz, Z. Physik 112, 691 (1939); Z. Physik 113, 10 (1939).
[CrossRef]

1934 (1)

J. F. Heard, Monthly Notices Roy. Astron. Soc. 94, 458 (1934).

1933 (1)

V. Weisskopf, Physik Z. 34, 1 (1933).

1931 (1)

E. F. M. Van der Held, Z. Physik 70, 508, (1931).
[CrossRef]

1926 (1)

R. Minkowski, Z. Physik 36, 839 (1926).
[CrossRef]

Cortorillo, S. F.

H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

Fromm, D. C.

H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

Gelhaus, F. E.

F. E. Gelhaus, S. W. Kessler, Final Tech. Rep. Contract DA-44-009-AMC-1632 (3) (April1967).

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964).

Heard, J. F.

J. F. Heard, Monthly Notices Roy. Astron. Soc. 94, 458 (1934).

Kessler, S. W.

F. E. Gelhaus, S. W. Kessler, Final Tech. Rep. Contract DA-44-009-AMC-1632 (3) (April1967).

Lindholm, E.

E. Lindholm, dissertation, Uppsala, 1942.

Minkowski, R.

R. Minkowski, Z. Physik 36, 839 (1926).
[CrossRef]

Rompe, R.

R. Rompe, R. Schulz, Z. Physik 112, 691 (1939); Z. Physik 113, 10 (1939).
[CrossRef]

Schmidt, K.

K. Schmidt, in Proc. Int. Con. Ionization Phenomena Gases, 16th Paris, 7, 17 (1963).

Schulz, R.

R. Rompe, R. Schulz, Z. Physik 112, 691 (1939); Z. Physik 113, 10 (1939).
[CrossRef]

Strauss, H. S.

H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

H. S. Strauss, Final Tech. Rep. Contract PA-44-009-AMC-1049(T) (July1967).

Unsold, A.

A. Unsold, Physik der Sternatmosphaeren (Julius Springer-Verlag, Berlin, 1955).
[CrossRef]

Van der Held, E. F. M.

E. F. M. Van der Held, Z. Physik 70, 508, (1931).
[CrossRef]

Weisskopf, V.

V. Weisskopf, Physik Z. 34, 1 (1933).

Illum. Eng. (1)

H. S. Strauss, S. F. Cortorillo, D. C. Fromm, Illum. Eng. 64, 179 (1969).

Monthly Notices Roy. Astron. Soc. (1)

J. F. Heard, Monthly Notices Roy. Astron. Soc. 94, 458 (1934).

Physik Z. (1)

V. Weisskopf, Physik Z. 34, 1 (1933).

Proc. Int. Con. Ionization Phenomena Gases, 16th Paris (1)

K. Schmidt, in Proc. Int. Con. Ionization Phenomena Gases, 16th Paris, 7, 17 (1963).

Z. Physik (3)

R. Rompe, R. Schulz, Z. Physik 112, 691 (1939); Z. Physik 113, 10 (1939).
[CrossRef]

E. F. M. Van der Held, Z. Physik 70, 508, (1931).
[CrossRef]

R. Minkowski, Z. Physik 36, 839 (1926).
[CrossRef]

Other (6)

“Experimental Transition Probabilities for Spectral Lines of Seventy Elements,” NBS Monograph 53 (1962).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Company, New York, 1964).

A. Unsold, Physik der Sternatmosphaeren (Julius Springer-Verlag, Berlin, 1955).
[CrossRef]

E. Lindholm, dissertation, Uppsala, 1942.

H. S. Strauss, Final Tech. Rep. Contract PA-44-009-AMC-1049(T) (July1967).

F. E. Gelhaus, S. W. Kessler, Final Tech. Rep. Contract DA-44-009-AMC-1632 (3) (April1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Grotrian level diagram of rubidium. Wavelength in millimicrons.

Fig. 2
Fig. 2

Grotrian level diagram of cesium. Wavelength in millimicrons.

Fig. 3
Fig. 3

Schematic of the alkali vapor arc lamp: 1, heater lead; 2, insulator; 3, molybdenum end socket; 4, cathode heater lead; 5, nickel envelope; 6, tungsten wire 0.06-cm diam; 7, molybdenum cylinder (cath.); 8, cathode tungsten buttom 0.3-cm diam; 9, sapphire 1.32-cm o.d., 0.18-cm wall thickness; 10, anode 2.47-cm length, 0.57-cm diam; 11, radiator; 12, anode electrical connection; 13, liquid metal reservoir; 14, nickel pinch-off.

Fig. 4
Fig. 4

Spectral radiance of the rubidium arc lamp as function of pressure and power input. (a) ≈70-W power input; (b) ≈140-W power input; (c) ≈210-W power input; and (d) ≈270-W power input.

Fig. 5
Fig. 5

Spectral radiance of the cesium arc lamp as function of pressure and power input. (a) ≈70-W power input; (b) ≈140-W power input; (c) ≈210-W power input; and (d) ≈277-W power input.

Fig. 6
Fig. 6

Cesium and rubidium continuum in the visible spectral region. Cesium: 207-W power input, 30-Torr pressure. Rubidium: 273-W power input, 30-Torr pressure.

Fig. 7
Fig. 7

Total spectral radiance of the rubidium arc lamp in the visible (0.42–0.75 μ) shown in the lower portion of the figure; and the near ir (0.75–1.1 μ) shown in the upper portion of the figure. Both are plotted againt power input. The rubidium vapor pressure in Torr is parameter.

Fig. 8
Fig. 8

Total spectral radiance of the cesium arc lamp in the visible (0.42–0.75 μ) shown in the lower portion of the figure; and the near ir (0.75–1.1 μ) shown in the upper portion of the figure. Both are plotted against power input. The cesium vapor pressure in Torr is parameter.

Fig. 9
Fig. 9

Total radiance (0.42–1.1 μ) of the (a) rubidium arc lamp and (b) the cesium arc lamp as function of power input. The vapor pressure in Torr is parameter.

Fig. 10
Fig. 10

Lamp voltage as function of (a) rubidium vapor pressure and (b) cesium vapor pressure for various power inputs.

Fig. 11
Fig. 11

Lamp current and lamp voltage of (a) the rubidium arc lamp and (b) the cesium arc lamp as function of power inputs for various pressures.

Fig. 12
Fig. 12

The ratios of radiance (0.42–1.1 μ) to the power inputs of (a) the rubidium arc lamp and (b) the cesium arc lamp are plotted against their power inputs.

Fig. 13
Fig. 13

Photograph of the rubidium arc at a pressure of approximately 8 Torr and a power input of 157 W.

Fig. 14
Fig. 14

Photograph of the rubidium arc in the constricted mode of operation; pressure approximately 320 Torr and a power input of 220 W.

Fig. 15
Fig. 15

Total radiance (0.85–1.4 μ) of a cesium–xenon lamp along the axis of the arc (after Strauss).

Tables (1)

Tables Icon

Table I Resonance Broadening of the 6s-6p Lines of Rubidium and Cesiuma

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = 2 π × C / r n .
γ = 4 π 3 × C × N ,
C ( e 2 / 4 π m ω 0 ) × f ,
Δ λ = ( c / ν 0 2 ) × ( γ / 2 π ) .
Δ λ = [ ( e 2 × c ) / 4 m ν 0 3 ] × f × N = [ ( e 2 × λ 0 3 ) / 4 m c 2 ] × f × N .
W total = [ 1 + 1.75 α ( N e / N e ) 1 4 ( 1 0.75 r ) ] W × ( N e / N e ) ,

Metrics