Abstract

A design procedure is developed which yields layer combinations having a polarization independent effective index of refraction. A method of transforming massive media to nonpolarizing effective massive media is shown. These two design techniques are then applied to the problem of making polarization independent metal–dielectric–metal interference filters and polarization independent beam splitters.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Drude, Wied. Ann. 43, 146 (1891).
  2. P. Drude, Ann. Phys. Chem. 38, 865 (1889).
  3. F. J. Dyson, Physica 24, 532 (1958).
    [CrossRef]
  4. P. W. Baumeister, Opt. Acta 6, 105 (1959).
  5. T. Turbadar, Opt. Acta 6, 139 (1959).
  6. T. Turbadar, Opt. Acta 11, 195 (1964).
    [CrossRef]
  7. P. Lostes, Rev. Opt. 38, 1 (1959).
  8. P. G. Kard, Opt. Spectrosc. 6, 244 (1959).
  9. P. G. Kard, Opt. Spectrosc. 6, 339 (1959).
  10. P. B. Mauer, J. Opt. Soc. Amer. 56, 1219 (1966).
    [CrossRef]
  11. P. B. Mauer, J. Opt. Soc. Amer. 58, 1160 (1968).
    [CrossRef]
  12. A. Herpin, Compt. Rend. 225, 182 (1947).
  13. L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
    [CrossRef]
  14. P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press Inc., New York, 1963), Vol. 1.
  15. S. M. MacNeille, U.S. Patent2403731, 9July1946.
  16. M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
    [CrossRef]

1968 (1)

P. B. Mauer, J. Opt. Soc. Amer. 58, 1160 (1968).
[CrossRef]

1966 (1)

P. B. Mauer, J. Opt. Soc. Amer. 56, 1219 (1966).
[CrossRef]

1964 (1)

T. Turbadar, Opt. Acta 11, 195 (1964).
[CrossRef]

1959 (5)

P. Lostes, Rev. Opt. 38, 1 (1959).

P. G. Kard, Opt. Spectrosc. 6, 244 (1959).

P. G. Kard, Opt. Spectrosc. 6, 339 (1959).

P. W. Baumeister, Opt. Acta 6, 105 (1959).

T. Turbadar, Opt. Acta 6, 139 (1959).

1958 (1)

F. J. Dyson, Physica 24, 532 (1958).
[CrossRef]

1952 (1)

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

1947 (2)

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

A. Herpin, Compt. Rend. 225, 182 (1947).

1891 (1)

P. Drude, Wied. Ann. 43, 146 (1891).

1889 (1)

P. Drude, Ann. Phys. Chem. 38, 865 (1889).

Banning, M.

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Opt. Acta 6, 105 (1959).

Berning, P. H.

P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press Inc., New York, 1963), Vol. 1.

Drude, P.

P. Drude, Wied. Ann. 43, 146 (1891).

P. Drude, Ann. Phys. Chem. 38, 865 (1889).

Dyson, F. J.

F. J. Dyson, Physica 24, 532 (1958).
[CrossRef]

Epstein, L. I.

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

Herpin, A.

A. Herpin, Compt. Rend. 225, 182 (1947).

Kard, P. G.

P. G. Kard, Opt. Spectrosc. 6, 244 (1959).

P. G. Kard, Opt. Spectrosc. 6, 339 (1959).

Lostes, P.

P. Lostes, Rev. Opt. 38, 1 (1959).

MacNeille, S. M.

S. M. MacNeille, U.S. Patent2403731, 9July1946.

Mauer, P. B.

P. B. Mauer, J. Opt. Soc. Amer. 58, 1160 (1968).
[CrossRef]

P. B. Mauer, J. Opt. Soc. Amer. 56, 1219 (1966).
[CrossRef]

Turbadar, T.

T. Turbadar, Opt. Acta 11, 195 (1964).
[CrossRef]

T. Turbadar, Opt. Acta 6, 139 (1959).

Ann. Phys. Chem. (1)

P. Drude, Ann. Phys. Chem. 38, 865 (1889).

Compt. Rend. (1)

A. Herpin, Compt. Rend. 225, 182 (1947).

J. Opt. Soc. Amer. (4)

L. I. Epstein, J. Opt. Soc. Amer. 42, 806 (1952).
[CrossRef]

P. B. Mauer, J. Opt. Soc. Amer. 56, 1219 (1966).
[CrossRef]

P. B. Mauer, J. Opt. Soc. Amer. 58, 1160 (1968).
[CrossRef]

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

Opt. Acta (3)

P. W. Baumeister, Opt. Acta 6, 105 (1959).

T. Turbadar, Opt. Acta 6, 139 (1959).

T. Turbadar, Opt. Acta 11, 195 (1964).
[CrossRef]

Opt. Spectrosc. (2)

P. G. Kard, Opt. Spectrosc. 6, 244 (1959).

P. G. Kard, Opt. Spectrosc. 6, 339 (1959).

Physica (1)

F. J. Dyson, Physica 24, 532 (1958).
[CrossRef]

Rev. Opt. (1)

P. Lostes, Rev. Opt. 38, 1 (1959).

Wied. Ann. (1)

P. Drude, Wied. Ann. 43, 146 (1891).

Other (2)

P. H. Berning, in Physics of Thin Films, G. Hass, Ed. (Academic Press Inc., New York, 1963), Vol. 1.

S. M. MacNeille, U.S. Patent2403731, 9July1946.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Variation with n0sinθ0 of the effective indices of four commonly used indices of refraction.

Fig. 2
Fig. 2

Performance of two beam splitter designs at normal incidence and at 45° from air.

Fig. 3
Fig. 3

Performance of a conventional metal–dielectric–metal interference filter at normal incidence and at 45° from air.

Fig. 4
Fig. 4

Dispersive effective indices of two symmetric combinations.

Fig. 5
Fig. 5

Dispersive effective indices of the same two symmetric combinations at 45° from air.

Fig. 6
Fig. 6

Performance at normal incidence and at 45° from air of an ir beam splitter using a polarization independent layer combination with and without matching layers to make the massive media polarization insensitive.

Fig. 7
Fig. 7

Polarization splitting of the massive media and how they are transformed by matching layers.

Fig. 8
Fig. 8

Performance at normal incidence and at 45° from air of a metal–dielectric–metal interference filter utilizing a polarization independent spacer and matching layers.

Tables (2)

Tables Icon

Table I Complex Refractive Index of Aluminum Used in the Computations

Tables Icon

Table II Computed Values of Δ for Commonly Used Single Layers and Three-Layer Combinations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( n p / n s ) ( n 0 sin θ 0 = 0.707 ) ,
Δ n ( B ) = Δ n ( H ) [ Δ n ( H ) / Δ n ( L ) ] 1 2 ,
Δ n 1 = ( Δ n g ) 1 2 .
R = [ ( n inc n sub ) / ( n inc n sub ) ] 2 , R = { [ n 1 n 2 ] / [ n 1 n 2 ] } 2 ,

Metrics