Abstract

The radiant absorptance of an arbitrary multilayer stack depends upon the amplitude reflectance of the medium on its emergent side. Contours of constant absorptance are drawn on the reflectance plane which enable the designer to determine the maximum and minimum absorptance. This is applied to optimize the absorptance of an interference photocathode.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Novice, J. Vine, Appl. Opt. 6, 1171 (1967).
    [CrossRef] [PubMed]
  2. R. N. Schmidt, K. C. Park, Appl. Opt. 4, 917 (1965).
    [CrossRef]
  3. A. F. Turner, in Symposium on Problems of Thermal Imaging (U.S. Army Engineer Research and Development Laboratories, Ft. Belvoir, Va., 1956).
  4. L. Young, J. Opt. Soc. Amer. 52, 753 (1962).
    [CrossRef]
  5. F. Abelès, in Advanced Optical Techniques, A.C.S. Van Heel, Ed. (North-Holland Publishing Co., Amsterdam, 1967).
  6. (Reference 1); see previous publications on this subject.
  7. V. E. Kondrashev, A. S. Shefov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 28, 1949 (1964).

1967

1965

1964

V. E. Kondrashev, A. S. Shefov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 28, 1949 (1964).

1962

L. Young, J. Opt. Soc. Amer. 52, 753 (1962).
[CrossRef]

Abelès, F.

F. Abelès, in Advanced Optical Techniques, A.C.S. Van Heel, Ed. (North-Holland Publishing Co., Amsterdam, 1967).

Kondrashev, V. E.

V. E. Kondrashev, A. S. Shefov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 28, 1949 (1964).

Novice, M. A.

Park, K. C.

Schmidt, R. N.

Shefov, A. S.

V. E. Kondrashev, A. S. Shefov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 28, 1949 (1964).

Turner, A. F.

A. F. Turner, in Symposium on Problems of Thermal Imaging (U.S. Army Engineer Research and Development Laboratories, Ft. Belvoir, Va., 1956).

Vine, J.

Young, L.

L. Young, J. Opt. Soc. Amer. 52, 753 (1962).
[CrossRef]

Appl. Opt.

Bull. Acad. Sci. U.S.S.R. Phys. Ser.

V. E. Kondrashev, A. S. Shefov, Bull. Acad. Sci. U.S.S.R. Phys. Ser. 28, 1949 (1964).

J. Opt. Soc. Amer.

L. Young, J. Opt. Soc. Amer. 52, 753 (1962).
[CrossRef]

Other

F. Abelès, in Advanced Optical Techniques, A.C.S. Van Heel, Ed. (North-Holland Publishing Co., Amsterdam, 1967).

(Reference 1); see previous publications on this subject.

A. F. Turner, in Symposium on Problems of Thermal Imaging (U.S. Army Engineer Research and Development Laboratories, Ft. Belvoir, Va., 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Showing the absorbing stack which is bounded on its right by an emergent medium of admittance Ŷ and on its left by an incident medium of refractive index no.

Fig. 2
Fig. 2

Isoabsorptance contours (in percent) for a palladium film of 200-Å thickness and optical constants n = 2.30 and k = 2.70, plotted in the amplitude reflectance plane of the emergent medium at a wavelength of 5461 Å.

Fig. 3
Fig. 3

Isoabsorptance contours (in percent) for a photocathode film of 400-Å thickness and optical constants n = 2.93 and k = 0.28, plotted in the amplitude reflectance plane of the emergent medium at a wavelength of 7000 Å.

Fig. 4
Fig. 4

The computed spectral absorptance of an S-20 photocathode of 400-Å thickness, using the published7 dispersive optical constants. (A) Deposited on glass substrate, Ŷ = 1.52 + j 0. (B) Deposited on aluminum substrate. (C) Deposited on four-layer matching stack (design given in Table II). (D) Maximum absorptance, assuming | Γ ˆ | = 1.0 and proper phase matching at each wavelength.

Tables (3)

Tables Icon

Table I Definition of Parameters Which Appear in Equations in the Text, in Terms of the Elements of the Characteristic Matrix and Refractive Index of the Incident Medium

Tables Icon

Table II Optical Constants of the S-20 Photocathode from Published Valuesa

Tables Icon

Table III Design of a Four-Layer Matching Stack Deposited on an Aluminum Substrate

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

M = [ a ˆ 1 a ˆ 3 a ˆ 2 a ˆ 4 ] ,
A = 4 n 0 ( D s x ) / D ,
D s = D 10 + x D 10 + z D 11 + ( x 2 + z 2 ) D 12 , D = x D x + z D z + ( x 2 + z 2 ) D x z + D 1 ,
Γ ˆ = u + j w = ( 1 y ˆ ) ( 1 + y ˆ ) 1 ,
u r = ( B 2 + B 0 ) / ( B 0 + B 2 B 10 ) , w r = B 01 / ( B 0 + B 2 B 10 ) ,
s r = [ B 10 B 2 B 0 B 0 + B 2 B 10 + u r 2 + w r 2 ] 1 2 ,
z = ( B 01 ) / 2 B 2
A max = 1 2 [ C 2 ( C 2 2 4 C 1 C 3 ) 1 2 ] / C 1 ,

Metrics