Abstract

A technique of chromatic image analysis for optical systems has been developed. The advantages of the technique in giving the lens designer an understanding of the significant inherent sources of secondary color in a particular design are demonstrated. Methods of reducing the secondary color through optimization of glass choice and the actual lens configuration are shown in the application of the analysis to the design of a highly corrected, finite conjugate relay lens.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Herzberger, Modern Geometrical Optics (Interscience Publishers, Inc., New York, 1958), p. 108.
  2. J. G. Baker, Appl. Opt. 2, 116 (1963).
    [CrossRef]
  3. B. Tatian, “Interpolation of Glass Indices with Applications to First Order Axial Chromatic Aberration,” Itek Corp., April1964.
  4. B. Tatian, J. Opt. Soc. Amer. 59, 478 (1969).
  5. A. E. Conrady, Applied Optics and Optical Design (Dover Publications, Inc., New York, 1957), Vol. 1, pp. 142–154.

1969 (1)

B. Tatian, J. Opt. Soc. Amer. 59, 478 (1969).

1963 (1)

J. G. Baker, Appl. Opt. 2, 116 (1963).
[CrossRef]

Baker, J. G.

J. G. Baker, Appl. Opt. 2, 116 (1963).
[CrossRef]

Conrady, A. E.

A. E. Conrady, Applied Optics and Optical Design (Dover Publications, Inc., New York, 1957), Vol. 1, pp. 142–154.

Herzberger, M.

M. Herzberger, Modern Geometrical Optics (Interscience Publishers, Inc., New York, 1958), p. 108.

Tatian, B.

B. Tatian, J. Opt. Soc. Amer. 59, 478 (1969).

B. Tatian, “Interpolation of Glass Indices with Applications to First Order Axial Chromatic Aberration,” Itek Corp., April1964.

Appl. Opt. (1)

J. G. Baker, Appl. Opt. 2, 116 (1963).
[CrossRef]

J. Opt. Soc. Amer. (1)

B. Tatian, J. Opt. Soc. Amer. 59, 478 (1969).

Other (3)

A. E. Conrady, Applied Optics and Optical Design (Dover Publications, Inc., New York, 1957), Vol. 1, pp. 142–154.

B. Tatian, “Interpolation of Glass Indices with Applications to First Order Axial Chromatic Aberration,” Itek Corp., April1964.

M. Herzberger, Modern Geometrical Optics (Interscience Publishers, Inc., New York, 1958), p. 108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic lens drawing. (Note the prime quantities following a surface.)

Fig. 2
Fig. 2

Reciprocal ν value.

Fig. 3
Fig. 3

Lens A. PACA = 0.0005, λ = 0.4–0.85 μ; SACA = 0.0080, λ = 0.68–0.8 μ.

Fig. 4
Fig. 4

Lens A reciprocal ν value.

Fig. 5
Fig. 5

Lens A (transverse aberration).

Fig. 6
Fig. 6

Lens B. PACA = −0.0003, λ = 0.4–0.85 μ; SACA = 0.0044, λ = 0.66–0.85 μ.

Fig. 7
Fig. 7

Lens B reciprocal ν value.

Fig. 8
Fig. 8

Lens B (transverse aberration).

Fig. 9
Fig. 9

Lens C. PACA = 0.0001, λ = 0.45–0.70 μ; SACA = 0.0013, λ = 0.70–0.90 μ.

Fig. 10
Fig. 10

Lens C reciprocal ν value.

Fig. 11
Fig. 11

Lens C (transverse aberration).

Fig. 12
Fig. 12

Lens C (OPD).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

TACH = y α ( 1 M ) ,
α = 1 / ν = ( N L N U ) / ( N M 1 ) ,
TACH k = M TACH 1 y α ( 1 M ) = PACA
y α = i = 1 k ( y i α i ) δ u i / i = 1 k δ u i ,
TACH k = M TACH 1 y β ( 1 M ) = SACA
α = α cos θ + β sin θ ,
β = k α sin θ + k β cos θ ,
θ = tan 1 ( i = 1 N α i β i / i = 1 N α i 2 )
TACH k = M TACH 1 y β ( 1 M ) = SACA ,
y β = i = 1 k ( y i β i ) δ u i / i = 1 k δ u i ,

Metrics