Abstract

Holograms have been made of test glass surfaces and later used in place of the test glass to evaluate optics. The reconstructed virtual image of the test glass surface is superimposed on the surface of the optic to be evaluated and the resulting interference rings interpreted with regard to power error and irregularity. This paper describes the technique used to produce and employ such holograms for both positive and negative surfaces.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Horman, Appl. Opt. 4, 333 (1965).
    [CrossRef]
  2. K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
    [CrossRef]
  3. L. O. Heflinger, R. F. Wuerker, R. E. Brooks, J. Appl. Phys. 37, 642 (1966).
    [CrossRef]
  4. K. A. Haines, B. P. Hildebrand, Appl. Opt. 5, 595 (1966).
    [CrossRef] [PubMed]
  5. A. C. S. Van Heel, C. A. J. Simons, Appl. Opt. 6, 803 (1967).
    [CrossRef] [PubMed]
  6. B. P. Hildebrand, K. A. Haines, R. Larkin, Appl. Opt. 6, 1267 (1967).
    [CrossRef] [PubMed]

1967

1966

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

L. O. Heflinger, R. F. Wuerker, R. E. Brooks, J. Appl. Phys. 37, 642 (1966).
[CrossRef]

K. A. Haines, B. P. Hildebrand, Appl. Opt. 5, 595 (1966).
[CrossRef] [PubMed]

1965

Brooks, R. E.

L. O. Heflinger, R. F. Wuerker, R. E. Brooks, J. Appl. Phys. 37, 642 (1966).
[CrossRef]

Haines, K. A.

Heflinger, L. O.

L. O. Heflinger, R. F. Wuerker, R. E. Brooks, J. Appl. Phys. 37, 642 (1966).
[CrossRef]

Hildebrand, B. P.

Horman, M. H.

Larkin, R.

Powell, R. L.

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

Simons, C. A. J.

Stetson, K. A.

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

Van Heel, A. C. S.

Wuerker, R. F.

L. O. Heflinger, R. F. Wuerker, R. E. Brooks, J. Appl. Phys. 37, 642 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Geometry used for holographic testing of concave surfaces.

Fig. 2
Fig. 2

Geometry used for holographic testing of convex surfaces.

Fig. 3
Fig. 3

Photograph of experimental setup used for concave surfaces.

Fig. 4
Fig. 4

Concave test glass surface reconstructed on itself in null field.

Fig. 5
Fig. 5

Concave test glass surface reconstructed on itself with slight axial displacement of surfaces.

Fig. 6
Fig. 6

Concave test glass surface reconstructed on optic surface having four rings of irregularity.

Fig. 7
Fig. 7

Concave optic surface reconstructed on itself in null field.

Fig. 8
Fig. 8

Concave optic surface reconstructed on itself with axial displacement between surfaces.

Fig. 9
Fig. 9

Concave optic surface reconstructed on itself after surface has been rotated 90° about its optical axis.

Fig. 10
Fig. 10

Photograph of experimental setup used for convex surfaces.

Fig. 11
Fig. 11

Convex test glass surface reconstructed on itself in null field.

Fig. 12
Fig. 12

Convex test glass surface reconstructed on itself with slight axial displacement of surfaces.

Fig. 13
Fig. 13

Convex test glass surface reconstructed on optic surface having one ring of irregularity.

Fig. 14
Fig. 14

Convex optic surface reconstructed on itself in null field.

Fig. 15
Fig. 15

Convex optic surface reconstructed on itself with axial displacement between surfaces.

Fig. 16
Fig. 16

Convex optic surface reconstructed on itself after surface has been rotated 90° about its optical axis.

Metrics