Abstract

The important sources of optical loss in the Brewster windows of a gas laser are outlined, and the effects of this loss on the performance of the laser are described. Particular attention is paid to thermal focusing effects which occur when absorbing films are formed on the Brewster windows of high-power lasers. A semiquantitative theory is developed which shows that absorptive loss in the windows sets an upper limit on the intracavity intensity of a Brewster window laser.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Rigrod et al., J. Appl. Phys. 33, 743 (1962).
    [CrossRef]
  2. C. J. Johnson, IEEE J. Quantum Electron. QE-4, 701 (1968).
    [CrossRef]
  3. G. de Mars et al., IEEE J. Quantum Electron. QE-4, 631 (1968).
    [CrossRef]
  4. R. C. C. Leite et al., Appl. Phys. Lett. 5, 141 (1964).
    [CrossRef]
  5. J. P. Gordon et al., J. Appl. Phys. 36, 3 (1965).
    [CrossRef]
  6. D. Solimini, Appl. Opt. 5, 1931 (1966).
    [CrossRef] [PubMed]
  7. J. T. Whinnery et al., IEEE J. Quantum Electron. QE-3, 382 (1967).
    [CrossRef]
  8. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  9. D. C. Sinclair, W. E. Bell, Gas Laser Technology (Holt, Rinehart and Winston, Inc., New York, 1969), Chap. 6.
  10. Ref. 9, pp. 116–118.

1968 (2)

C. J. Johnson, IEEE J. Quantum Electron. QE-4, 701 (1968).
[CrossRef]

G. de Mars et al., IEEE J. Quantum Electron. QE-4, 631 (1968).
[CrossRef]

1967 (1)

J. T. Whinnery et al., IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

1966 (2)

1965 (1)

J. P. Gordon et al., J. Appl. Phys. 36, 3 (1965).
[CrossRef]

1964 (1)

R. C. C. Leite et al., Appl. Phys. Lett. 5, 141 (1964).
[CrossRef]

1962 (1)

W. W. Rigrod et al., J. Appl. Phys. 33, 743 (1962).
[CrossRef]

Bell, W. E.

D. C. Sinclair, W. E. Bell, Gas Laser Technology (Holt, Rinehart and Winston, Inc., New York, 1969), Chap. 6.

de Mars, G.

G. de Mars et al., IEEE J. Quantum Electron. QE-4, 631 (1968).
[CrossRef]

Gordon, J. P.

J. P. Gordon et al., J. Appl. Phys. 36, 3 (1965).
[CrossRef]

Johnson, C. J.

C. J. Johnson, IEEE J. Quantum Electron. QE-4, 701 (1968).
[CrossRef]

Kogelnik, H.

Leite, R. C. C.

R. C. C. Leite et al., Appl. Phys. Lett. 5, 141 (1964).
[CrossRef]

Li, T.

Rigrod, W. W.

W. W. Rigrod et al., J. Appl. Phys. 33, 743 (1962).
[CrossRef]

Sinclair, D. C.

D. C. Sinclair, W. E. Bell, Gas Laser Technology (Holt, Rinehart and Winston, Inc., New York, 1969), Chap. 6.

Solimini, D.

Whinnery, J. T.

J. T. Whinnery et al., IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. C. C. Leite et al., Appl. Phys. Lett. 5, 141 (1964).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. J. Johnson, IEEE J. Quantum Electron. QE-4, 701 (1968).
[CrossRef]

G. de Mars et al., IEEE J. Quantum Electron. QE-4, 631 (1968).
[CrossRef]

J. T. Whinnery et al., IEEE J. Quantum Electron. QE-3, 382 (1967).
[CrossRef]

J. Appl. Phys. (2)

J. P. Gordon et al., J. Appl. Phys. 36, 3 (1965).
[CrossRef]

W. W. Rigrod et al., J. Appl. Phys. 33, 743 (1962).
[CrossRef]

Other (2)

D. C. Sinclair, W. E. Bell, Gas Laser Technology (Holt, Rinehart and Winston, Inc., New York, 1969), Chap. 6.

Ref. 9, pp. 116–118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relative spot size on the mirrors of a curved mirror laser vs R/D.

Fig. 2
Fig. 2

The maximum iutracavity power times the intracavity absorptive loss of a Brewster window laser vs R/D. Note that the actual numerical values are affected by the extensive approximations made in the theoretical analysis.

Fig. 3
Fig. 3

Relative output power of a multilongitudinal mode laser vs round trip loss for various values of the round trip gain.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = f [ 1 + ( t c / 2 t ) ] ,
f = C ( w s 2 / β P )
t c = C 2 w s 2
C 1 = k π n 0 0.24 d n / d T ,
C 2 = ρ c p / 4 k .
C 1 4400 W / cm ,
C 2 30 sec / cm 2 .
R = R f / ( R + f ) .
w s 2 = ( λ R / π ) [ D / ( 2 R D ) ] 1 2 .
R D / 2 .
p max ( 0.07 / β ) [ ( 2 R D ) / D ] 1 2 .
P out = A t W 0 ( X 1 ) ,
X = 2 g l L / ( a + t ) ,
t opt = ( a G ) 1 2 a ,
G = 2 g l L
P out = A W 0 [ ( G ) 1 2 ( a ) 1 2 ] 2 .

Metrics