Abstract

A new method of passive image dissection suitable for use in visualizing images formed in appropriate optics by millimeter, submillimeter, or far ir radiation is proposed. The method is based upon resonance absorption of radiant energy incident on an interferometric structure formed by semiconductor panel and a planar array of piezoelectric transducers that can be addressed sequentially. The equations governing the general behavior of the device are derived and used to point out some interesting and useful qualities and to compare its characteristics with other existing methods of passive image dissection. Experimental verification of the theoretical results are also presented.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Stockman, Bethold Zarwyn, Proc. IEEE 54, 763 (1968).
    [CrossRef]
  2. C. F. Augustine, W. E. Kock, Proc. IEEE 57, 354 (1969).
    [CrossRef]
  3. J. E. Midwinter, J. Warner, J. Appl. Phys. 38, 519 (1967).
    [CrossRef]
  4. H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
    [CrossRef]
  5. B. J. Levin, Proc. IEEE 56, 1230 (1968).
    [CrossRef]
  6. N. H. Farhat, B. J. Levin, J. Bordogna, Proceedings of the Symposium on Aviation Electronics (Fort Monmouth, New Jersey, 1968).
  7. H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
    [CrossRef]

1969 (2)

C. F. Augustine, W. E. Kock, Proc. IEEE 57, 354 (1969).
[CrossRef]

H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
[CrossRef]

1968 (2)

H. E. Stockman, Bethold Zarwyn, Proc. IEEE 54, 763 (1968).
[CrossRef]

B. J. Levin, Proc. IEEE 56, 1230 (1968).
[CrossRef]

1967 (2)

J. E. Midwinter, J. Warner, J. Appl. Phys. 38, 519 (1967).
[CrossRef]

H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
[CrossRef]

Augustine, C. F.

C. F. Augustine, W. E. Kock, Proc. IEEE 57, 354 (1969).
[CrossRef]

Bordogna, J.

N. H. Farhat, B. J. Levin, J. Bordogna, Proceedings of the Symposium on Aviation Electronics (Fort Monmouth, New Jersey, 1968).

Farhat, N. H.

N. H. Farhat, B. J. Levin, J. Bordogna, Proceedings of the Symposium on Aviation Electronics (Fort Monmouth, New Jersey, 1968).

Hoffer, R. C.

H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
[CrossRef]

Jacobs, H.

H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
[CrossRef]

H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
[CrossRef]

Kock, W. E.

C. F. Augustine, W. E. Kock, Proc. IEEE 57, 354 (1969).
[CrossRef]

Levin, B. J.

B. J. Levin, Proc. IEEE 56, 1230 (1968).
[CrossRef]

N. H. Farhat, B. J. Levin, J. Bordogna, Proceedings of the Symposium on Aviation Electronics (Fort Monmouth, New Jersey, 1968).

Midwinter, J. E.

J. E. Midwinter, J. Warner, J. Appl. Phys. 38, 519 (1967).
[CrossRef]

Morris, G.

H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
[CrossRef]

Register, D.

H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
[CrossRef]

Schumacher, J.

H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
[CrossRef]

Stockman, H. E.

H. E. Stockman, Bethold Zarwyn, Proc. IEEE 54, 763 (1968).
[CrossRef]

Warner, J.

J. E. Midwinter, J. Warner, J. Appl. Phys. 38, 519 (1967).
[CrossRef]

Zarwyn, Bethold

H. E. Stockman, Bethold Zarwyn, Proc. IEEE 54, 763 (1968).
[CrossRef]

IEEE Trans. Electron Devices (1)

H. Jacobs, J. Schumacher, D. Register, IEEE Trans. Electron Devices ED-16, 419 (1969).
[CrossRef]

J. Appl. Phys. (1)

J. E. Midwinter, J. Warner, J. Appl. Phys. 38, 519 (1967).
[CrossRef]

J. Opt. Soc. Amer. (1)

H. Jacobs, G. Morris, R. C. Hoffer, J. Opt. Soc. Amer. 57, 993 (1967).
[CrossRef]

Proc. IEEE (3)

B. J. Levin, Proc. IEEE 56, 1230 (1968).
[CrossRef]

H. E. Stockman, Bethold Zarwyn, Proc. IEEE 54, 763 (1968).
[CrossRef]

C. F. Augustine, W. E. Kock, Proc. IEEE 57, 354 (1969).
[CrossRef]

Other (1)

N. H. Farhat, B. J. Levin, J. Bordogna, Proceedings of the Symposium on Aviation Electronics (Fort Monmouth, New Jersey, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Image dissector geometry.

Fig. 2
Fig. 2

Dependence of reflection coefficient on electrical length of the air gap for germanium (r = 16) and various values of a = tanβl1.

Fig. 3
Fig. 3

Proposed piezoelectric image dissector.

Fig. 4
Fig. 4

Arrangement for evaluating performance of the proposed image dissector.

Fig. 5
Fig. 5

Reflected power in decibels below maximum value vs relative change in electrical length of air gap caused by movement of (a) copper slab–plunger assembly; (b) plunger alone; (c) theoretical curve obtained from Eq. (3) for the germanium panel used.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ρ = [ ( r ) 1 2 tan h α l 1 ] [ ( r ) 1 2 tan β l 1 tan β 0 l 2 1 ] + j [ 1 ( r ) 1 2 tan h α l 1 ] [ ( r ) 1 2 tan β 0 l 2 + tan β l 1 ] [ ( r ) 1 2 + tan h α l 1 ] [ ( r ) 1 2 tan β l 1 tan β 0 l 2 + 1 ] + j [ 1 + ( r ) 1 2 tan h α l 1 ] [ ( r ) 1 2 tan β 0 l 2 + tan β l 1 ] ,
tan h α l 1 = 1 / ( r ) 1 2 ,
tan β l 1 tan β 0 l 2 = 1 / ( r ) 1 2 .
| ρ | 2 = g 2 ( 2 g ) 2 + [ P ( x ) / Q ( x ) ]
P ( x ) = [ 2 / ( r ) 1 2 ] 2 [ ( ) 1 2 tan x + a ] 2 , Q ( x ) = [ a ( ) 1 2 tan x 1 ] 2 , x = β 0 l 2 , a = tan β l 1 , g = 1 ( 1 / r ) .
| ρ | 2 max = ( g 2 g ) 2 = ( r 1 r + 1 ) 2 ,
l 2 = ( λ 0 / 2 π ) tan 1 [ 1 / a ( r ) 1 2 ] ± n ( λ 0 / 2 ) ( n = 0,1,2 , )
l 2 = ( λ 0 / 2 π ) tan 1 [ a / ( r ) 1 2 ] ± n ( λ 0 / 2 ) ( n = 0,1,2 , ) .
Δ l 2 = ( λ 0 / 2 π ) | tan 1 [ 1 / a ( r ) 1 2 ] + [ a / ( r ) 1 2 ] | .
Δ l 2 min = ( λ 0 / π ) | tan 1 [ 1 / ( r ) 1 2 ] | .
Δ l 2 min λ 0 / π ( r ) 1 2 .
Δ l = d 15 V ,
V λ 0 / π ( r ) 1 2 d 15
a = tan β l 1 = ± 1
β l 1 = ( 2 m + 1 ) ( π / 4 )
l 1 = ( 2 m + 1 ) λ 0 / 8 ( r ) 1 2 ( m = 0,1,2 ) ,
α l 1 1 / ( r ) 1 2 .
σ = 1 / 60 π l 1 .

Metrics