Abstract

A holographic technique to compensate for atmospherically induced phase distortion of a 10.6-μ laser beam is presented. After a brief outline of the principle of adaptive phase-distortion compensation, the experimental setup to demonstrate feasibility is described. Results obtained for a reflecting target at distances of 150 m and 4600 m are presented and discussed in detail. It is shown that the power delivered onto a target and thus the return signal can be significantly increased by the principle of adaptive phase-distortion compensation. By compensating for phase distortions in both the transmitted and received beams, the signal-to-noise ratio of the received signal can be improved by a factor of N2, N being the number of apertures used, if the phase relation was completely random beforehand. The results of these tests demonstrate that large arrays can be utilized in spite of the distorting effects which are normally produced by the atmosphere.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Tatarkski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).
  2. R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Amer. 54, 52 (1964).
    [CrossRef]
  3. G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Amer. 54, 1302 (1964).
    [CrossRef]
  4. D. L. Fried, J. Opt. Soc. Amer. 56, 1372 (1966).
    [CrossRef]
  5. D. L. Fried, J. Opt. Soc. Amer. 56, 1381 (1966).
  6. J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
    [CrossRef]
  7. J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).
  8. J. D. Gaskill, J. Opt. Soc. Amer. 58, 600 (1968).
    [CrossRef]
  9. E. N. Leith, J. Upatnieks, J. Soc. Photo. Instrum. Engrs. 4, 3 (1965).
  10. H. Kogelnik, Bell System Tech. J. 44, 2451 (1965).
  11. W. T. Cathey, Proc. IEEE 56, 340 (1968).
    [CrossRef]

1968 (3)

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

J. D. Gaskill, J. Opt. Soc. Amer. 58, 600 (1968).
[CrossRef]

W. T. Cathey, Proc. IEEE 56, 340 (1968).
[CrossRef]

1966 (3)

D. L. Fried, J. Opt. Soc. Amer. 56, 1372 (1966).
[CrossRef]

D. L. Fried, J. Opt. Soc. Amer. 56, 1381 (1966).

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

1965 (2)

E. N. Leith, J. Upatnieks, J. Soc. Photo. Instrum. Engrs. 4, 3 (1965).

H. Kogelnik, Bell System Tech. J. 44, 2451 (1965).

1964 (2)

R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Amer. 54, 52 (1964).
[CrossRef]

G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Amer. 54, 1302 (1964).
[CrossRef]

Cathey, W. T.

W. T. Cathey, Proc. IEEE 56, 340 (1968).
[CrossRef]

Fried, D. L.

D. L. Fried, J. Opt. Soc. Amer. 56, 1372 (1966).
[CrossRef]

D. L. Fried, J. Opt. Soc. Amer. 56, 1381 (1966).

Gaskill, J. D.

J. D. Gaskill, J. Opt. Soc. Amer. 58, 600 (1968).
[CrossRef]

Goodman, J. W.

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Hufnagel, R. E.

R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Amer. 54, 52 (1964).
[CrossRef]

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Jackson, D. W.

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Knotts, J. W.

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

Kogelnik, H.

H. Kogelnik, Bell System Tech. J. 44, 2451 (1965).

Lehmann, M.

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Leith, E. N.

E. N. Leith, J. Upatnieks, J. Soc. Photo. Instrum. Engrs. 4, 3 (1965).

Reynolds, G. O.

G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Amer. 54, 1302 (1964).
[CrossRef]

Skinner, T. J.

G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Amer. 54, 1302 (1964).
[CrossRef]

Stanley, N. R.

R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Amer. 54, 52 (1964).
[CrossRef]

Tatarkski, V. I.

V. I. Tatarkski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).

Upatnieks, J.

E. N. Leith, J. Upatnieks, J. Soc. Photo. Instrum. Engrs. 4, 3 (1965).

Appl. Phys. Lett. (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, M. Lehmann, Appl. Phys. Lett. 8, 311 (1966).
[CrossRef]

Bell System Tech. J. (1)

H. Kogelnik, Bell System Tech. J. 44, 2451 (1965).

J. Opt. Soc. Amer. (6)

J. W. Goodman, D. W. Jackson, J. W. Knotts, M. Lehmann, J. Opt. Soc. Amer. 58, 730 (1968).

J. D. Gaskill, J. Opt. Soc. Amer. 58, 600 (1968).
[CrossRef]

R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Amer. 54, 52 (1964).
[CrossRef]

G. O. Reynolds, T. J. Skinner, J. Opt. Soc. Amer. 54, 1302 (1964).
[CrossRef]

D. L. Fried, J. Opt. Soc. Amer. 56, 1372 (1966).
[CrossRef]

D. L. Fried, J. Opt. Soc. Amer. 56, 1381 (1966).

J. Soc. Photo. Instrum. Engrs. (1)

E. N. Leith, J. Upatnieks, J. Soc. Photo. Instrum. Engrs. 4, 3 (1965).

Proc. IEEE (1)

W. T. Cathey, Proc. IEEE 56, 340 (1968).
[CrossRef]

Other (1)

V. I. Tatarkski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Steps in compensating for transmission through a distorter. The arrows beneath the transmit–receive aperture are associated with the received and the adapted transmitted beams. The two sets of arrows beneath the distorting medium show the changes in the wavefront in transmission and reception through the distorter. The three arrows beneath the reflecting target show the wave originally impinging on the target, reflected from the target, and transmitted back to the target with compensation for the distorting medium.

Fig. 2
Fig. 2

Layout of the optical system.

Fig. 3
Fig. 3

Block diagram of the system used.

Fig. 4
Fig. 4

Photograph of the two ranges used and periscope mirrors.

Fig. 5
Fig. 5

Ground profile of the two ranges.

Fig. 6
Fig. 6

Intermediate frequencies for received signals of two apertures showing relative phase fluctuations. The upper set of traces were photographed at one time and the lower set at a later time. Vertical scale: 100 mV/cm; horizontal scale: 0.2 μ/cm; times 1:55 p.m. and 1:57 p.m.

Fig. 7
Fig. 7

Recording of the open-loop error signal of the adaptive phase control for the transmit beams. This shows the relative phase of the received beams. The upper trace shows the error signal when the target at 150 m was used. Vertical scale: 0.5 V/cm; horizontal scale: 20 mm/sec; time 4:45 p.m. The lower trace shows the signal on a different day when the target at 4600 m was used. Vertical scale: 0.5 V/cm; horizontal scale: 5 mm/sec; time 4:50 p.m.

Fig. 8
Fig. 8

Intermediate frequencies for received signals from near target (150 m) with both apertures transmitting and with each single aperture transmitting. Upper set of traces: both apertures transmitting; middle set of traces: aperture associated with upper trace transmitting; lower set of traces: aperture associated with lower trace transmitting. Vertical scale: 200 mV/cm; horizontal scale: 0.1 sec/cm; time 5:00 p.m.; visibility approximately 5 km.

Fig. 9
Fig. 9

Intermediate frequencies for received signals from 4.6-km target with both apertures transmitting and with one aperture transmitting. Upper set of traces: both apertures transmitting; lower set of traces: aperture associated with upper trace transmitting. Vertical scale: 100 mV/cm; horizontal scale: 0.2 sec/cm; time 5:30 p.m.

Fig. 10
Fig. 10

Level of one detected signal from the target at 4.6 km first with receiving aperture not transmitting and then with both apertures transmitting. The lower trace is a continuation of the upper trace. Vertical scale: 20 mV/cm; horizontal scale: 5 cm/sec. The zero level is six divisions from the bottom of the scale. Time 5:40 p.m.

Fig. 11
Fig. 11

Increase in return signals from the target at 4.6 km with adaptive control of the transmitted beams off and on. Vertical scale: 10 mV/division; horizontal scale: 5 divisions/sec; zero level: eight divisions; time 4:40 p.m.

Tables (1)

Tables Icon

Table I Typical Test Results

Metrics