## Abstract

In a holographic page-oriented memory the information is stored in an array of holograms. It is advantageous to record the Fourier transform of the original data mask because the minimum space bandwidth is then required and the information about any one data bit is spread over the hologram plane. In the Fourier transform plane most of the light is concentrated in an array of bright “spikes” because the data mask consists of an array of equidistant data spots. Some means is needed to distribute the light more evenly. We report here on the use of a phase mask which imparts a phase shift of 180° to half the data spots chosen at random. An analysis shows that the intensity in the Fourier transform plane is now proportional to the intensity of the Fourier transform of one single data spot.

© 1970 Optical Society of America

Full Article |

PDF Article
### Equations (9)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$A\left(\xi ,\eta \right)={\displaystyle {\int}_{-\infty}^{+\infty}{\displaystyle {\int}_{-\infty}^{+\infty}a\left({x}_{1},{y}_{1}\right)\phantom{\rule{0.2em}{0ex}}\text{exp}\left(2\pi i\xi {x}_{1}\right)\phantom{\rule{0.2em}{0ex}}\text{exp}\left(2\pi i\eta {y}_{1}\right)d{x}_{1}d{y}_{1}}}.$$
(2)
$$\xi ={x}_{2}/\mathrm{\lambda}d,$$
(3)
$$\eta ={y}_{2}/\mathrm{\lambda}d.$$
(4)
$$I\left(\xi ,\eta \right)=A\left(\xi ,\eta \right)A*\left(\xi ,\eta \right).$$
(5)
$$r\left({x}_{1},{y}_{1}\right)={\displaystyle {\int}_{-\infty}^{+\infty}{\displaystyle {\int}_{-\infty}^{+\infty}a*\left(u,\upsilon \right)\phantom{\rule{0.2em}{0ex}}a\left(u+{x}_{1},\upsilon +{y}_{1}\right)dud\upsilon}}.$$
(6)
$$I\left(\xi ,\eta \right)=\left\{2\left[{J}_{1}\left(\pi b\nu \right)/\pi b\nu \right]\right\}{.}^{2}$$
(7)
$$\left|{a}_{1}\right|=\left|{b}_{1}\right|=\left|a\right|\phantom{\rule{0.2em}{0ex}}\text{cos}\left(\delta /2\right),$$
(8)
$$\left|{a}_{2}\right|=\left|{b}_{2}\right|=\left|a\right|\phantom{\rule{0.2em}{0ex}}\text{sin}\left(\delta /2\right).$$
(9)
$${P}_{2}=P\phantom{\rule{0.2em}{0ex}}{\text{sin}}^{2}\left(\delta /2\right),$$