Abstract

The doppler frequency shift produced in the various diffraction orders of a rotating radial diffraction grating allows such a device to be used as an optical modulator. The theory and performance of such devices is presented.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Forrester, J. Opt. Soc. Amer. 31, 253 (1961).
  2. T. Suzuki, R. Hioki, J. Opt. Soc. Amer. 57, 1551 (1967).
    [CrossRef]
  3. Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
    [CrossRef]
  4. J. W. Foreman et al., IEEE J. Quantum Electron. QE-2, 260 (1966).
    [CrossRef]
  5. R. J. Goldstein, D. K. Kreid, Appl. Mech., Trans. ASME 34, 813 (1967).
    [CrossRef]
  6. D. R. Herriott, U. S. Patent No. 3, 175,088 (1965).
  7. C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
    [CrossRef]
  8. C. F. Buhrer, L. Ho, J. Zucker, Appl. Opt. 3, 517 (1964).
    [CrossRef]
  9. H. Z. Cummins, N. Knable, Proc. IEEE 51, 1246 (1963).
    [CrossRef]
  10. H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
    [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1964).
  12. P. J. Magill, T. Young, Appl. Phys. Lett. 5, 13 (1964).
    [CrossRef]
  13. J. W. Foreman, Appl. Opt. 6, 821 (1967).
    [CrossRef] [PubMed]

1967 (3)

T. Suzuki, R. Hioki, J. Opt. Soc. Amer. 57, 1551 (1967).
[CrossRef]

R. J. Goldstein, D. K. Kreid, Appl. Mech., Trans. ASME 34, 813 (1967).
[CrossRef]

J. W. Foreman, Appl. Opt. 6, 821 (1967).
[CrossRef] [PubMed]

1966 (1)

J. W. Foreman et al., IEEE J. Quantum Electron. QE-2, 260 (1966).
[CrossRef]

1964 (4)

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

C. F. Buhrer, L. Ho, J. Zucker, Appl. Opt. 3, 517 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

P. J. Magill, T. Young, Appl. Phys. Lett. 5, 13 (1964).
[CrossRef]

1963 (1)

H. Z. Cummins, N. Knable, Proc. IEEE 51, 1246 (1963).
[CrossRef]

1962 (1)

C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
[CrossRef]

1961 (1)

A. T. Forrester, J. Opt. Soc. Amer. 31, 253 (1961).

Baird, D.

C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1964).

Buhrer, C. F.

C. F. Buhrer, L. Ho, J. Zucker, Appl. Opt. 3, 517 (1964).
[CrossRef]

C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
[CrossRef]

Conwell, E.

C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
[CrossRef]

Cummins, H. Z.

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Proc. IEEE 51, 1246 (1963).
[CrossRef]

Foreman, J. W.

J. W. Foreman, Appl. Opt. 6, 821 (1967).
[CrossRef] [PubMed]

J. W. Foreman et al., IEEE J. Quantum Electron. QE-2, 260 (1966).
[CrossRef]

Forrester, A. T.

A. T. Forrester, J. Opt. Soc. Amer. 31, 253 (1961).

Goldstein, R. J.

R. J. Goldstein, D. K. Kreid, Appl. Mech., Trans. ASME 34, 813 (1967).
[CrossRef]

Herriott, D. R.

D. R. Herriott, U. S. Patent No. 3, 175,088 (1965).

Hioki, R.

T. Suzuki, R. Hioki, J. Opt. Soc. Amer. 57, 1551 (1967).
[CrossRef]

Ho, L.

Knable, N.

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

H. Z. Cummins, N. Knable, Proc. IEEE 51, 1246 (1963).
[CrossRef]

Kreid, D. K.

R. J. Goldstein, D. K. Kreid, Appl. Mech., Trans. ASME 34, 813 (1967).
[CrossRef]

Magill, P. J.

P. J. Magill, T. Young, Appl. Phys. Lett. 5, 13 (1964).
[CrossRef]

Suzuki, T.

T. Suzuki, R. Hioki, J. Opt. Soc. Amer. 57, 1551 (1967).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1964).

Yeh, Y.

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

Young, T.

P. J. Magill, T. Young, Appl. Phys. Lett. 5, 13 (1964).
[CrossRef]

Zucker, J.

Appl. Mech., Trans. ASME (1)

R. J. Goldstein, D. K. Kreid, Appl. Mech., Trans. ASME 34, 813 (1967).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

C. F. Buhrer, D. Baird, E. Conwell, Appl. Phys. Lett. 1, 46 (1962).
[CrossRef]

P. J. Magill, T. Young, Appl. Phys. Lett. 5, 13 (1964).
[CrossRef]

Y. Yeh, H. Z. Cummins, Appl. Phys. Lett. 4, 176 (1964).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. W. Foreman et al., IEEE J. Quantum Electron. QE-2, 260 (1966).
[CrossRef]

J. Opt. Soc. Amer. (2)

A. T. Forrester, J. Opt. Soc. Amer. 31, 253 (1961).

T. Suzuki, R. Hioki, J. Opt. Soc. Amer. 57, 1551 (1967).
[CrossRef]

Phys. Rev. Lett. (1)

H. Z. Cummins, N. Knable, Y. Yeh, Phys. Rev. Lett. 12, 150 (1964).
[CrossRef]

Proc. IEEE (1)

H. Z. Cummins, N. Knable, Proc. IEEE 51, 1246 (1963).
[CrossRef]

Other (2)

D. R. Herriott, U. S. Patent No. 3, 175,088 (1965).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Laser doppler velocimeter.

Fig. 2
Fig. 2

Optical frequency shifting with a moving grating.

Fig. 3
Fig. 3

Use of a radial grating.

Fig. 4
Fig. 4

Apparatus for investigation of radial grating modulator performance.

Fig. 5
Fig. 5

Typical heterodyne signal.

Fig. 6
Fig. 6

Frequency shift vs rotation rate.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ν D = 2 V sin ( θ / 2 ) / λ 0 ,
T ( y 1 , t ) = 1 + cos [ ( 2 π / a ) ( y 1 υ t ) ] .
ψ ( s , t ) = e i 2 π ν 0 t { δ ( s ) + 1 2 exp [ i ( 2 π / a ) υ t ] δ [ s + ( 2 π / a ) ] + 1 2 exp [ i ( 2 π / a ) υ t ] δ [ s ( 2 π / a ) ] } ,
ν ( r ) = ν 0 + ( υ / a )
ν = ν 0 + ( ω / K ) .
θ θ 0 = m λ / a ,

Metrics