Abstract

The frequency of one axial mode of a two-mode He–Ne laser is tuned by mirror displacement independently from the other mode if a third mirror is added to the usual two laser mirrors. The frequency shift is proportional to the mirror displacement and can be detected with high sensitivity by observing the beat frequency with the other axial mode. The sensitivity of such a two-mode laser with a coupled resonator for measurements of small length shifts has been tested.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).
  2. H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  3. H. Eichler, G. Herziger, Z. Angew. Phys. 23, 297 (1967).

1968 (1)

A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).

1967 (1)

H. Eichler, G. Herziger, Z. Angew. Phys. 23, 297 (1967).

1966 (1)

Ballik, E. A.

A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).

Bond, W. L.

A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).

Eichler, H.

H. Eichler, G. Herziger, Z. Angew. Phys. 23, 297 (1967).

Herziger, G.

H. Eichler, G. Herziger, Z. Angew. Phys. 23, 297 (1967).

Javan, A.

A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).

Kogelnik, H.

Li, T.

Appl. Opt. (1)

J. Opt. Soc. Amer. (1)

A. Javan, E. A. Ballik, W. L. Bond, J. Opt. Soc. Amer. 52, 96 (1968); G. Herziger, H. Lindner, Phys. Lett. 24A, 684 (1967).

Z. Angew. Phys. (1)

H. Eichler, G. Herziger, Z. Angew. Phys. 23, 297 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Laser with coupled resonator.

Fig. 2
Fig. 2

Resonance frequencies of a laser (a) and an optical resonator (b).

Fig. 3
Fig. 3

Computation of the reflectivity of an optical resonator.

Fig. 4
Fig. 4

Phase δ and absolute value of the complex reflectivity Ar/A0 = (R*)1/2e. In experiment different values of the transmissivity T with the same value of the reflectivity R have been achieved by using mirrors consisting of different numbers of dielectric layers. If more than fifteen layers were used T decreased with increasing number of layers while R remained practically constant.

Fig. 5
Fig. 5

Frequency shift Δνp of a laser vs change in resonator length.

Fig. 6
Fig. 6

Experimental frequency shift Δνp vs change in resonator length.

Fig. 7
Fig. 7

Experimental arrangement for frequency reaction measurement.

Fig. 8
Fig. 8

Schematical mechanical construction of laser and resonator for measurement of changes in length down to 10−3 Å.

Fig. 9
Fig. 9

Fluctuations Δνp of the beat frequency of two axial modes of a He–Ne laser with coupled resonator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = ν ( Δ L / L ) .
Δ ν P / Δ L R = 5 kHz / Å .
Δ ν / Δ L = 50 kHz / Å .

Metrics