Abstract

A small LiF prism constant deviation spectrometer of the Czerny-Turner type is described. The transmission in the vacuum uv is at least twice that of a typical Ebert plane grating spectrometer. Although designed for planetary astronomy, it is also useful for airglow experiments and interplanetary missions where compactness and low weight are desirable. Without a drive, it weighs 850 g and is roughly 17 cm × 10 cm × 7 cm. However, it is mechanically rugged with high wavelength stability in flight (~1 Å). With 0.5-mm entrance and exit slits the spectral resolution is 16 Å at 1216 Å.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
    [CrossRef]
  2. M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
    [CrossRef]
  3. R. A. Sawyer, Experimental Spectroscopy (Dover Publications Inc., New York, 1963), p. 87.
  4. J. Hennes, L. Dunkelman, in The Middle Ultraviolet: Its Science and Technology, A. E. S. Green, Ed. (John Wiley & Sons, Inc., New York, 1966), p. 356.
  5. A similar drive and general construction practice is described, by W. G. Fastie, J. Quant. Spectrosc. Radiative Transfer 3, 507 (1963), and in NASA Technical Note D-2250, 1964.
    [CrossRef]
  6. For a further discussion see J. L. Buckley, Ph.D. dissertation The Johns Hopkins University, 1969.

1969 (2)

H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
[CrossRef]

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
[CrossRef]

1963 (1)

A similar drive and general construction practice is described, by W. G. Fastie, J. Quant. Spectrosc. Radiative Transfer 3, 507 (1963), and in NASA Technical Note D-2250, 1964.
[CrossRef]

Bottema, M.

H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
[CrossRef]

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
[CrossRef]

Buckley, J. L.

For a further discussion see J. L. Buckley, Ph.D. dissertation The Johns Hopkins University, 1969.

Dunkelman, L.

J. Hennes, L. Dunkelman, in The Middle Ultraviolet: Its Science and Technology, A. E. S. Green, Ed. (John Wiley & Sons, Inc., New York, 1966), p. 356.

Fastie, W. G.

H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
[CrossRef]

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
[CrossRef]

A similar drive and general construction practice is described, by W. G. Fastie, J. Quant. Spectrosc. Radiative Transfer 3, 507 (1963), and in NASA Technical Note D-2250, 1964.
[CrossRef]

Hennes, J.

J. Hennes, L. Dunkelman, in The Middle Ultraviolet: Its Science and Technology, A. E. S. Green, Ed. (John Wiley & Sons, Inc., New York, 1966), p. 356.

Moos, H. W.

H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
[CrossRef]

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
[CrossRef]

Sawyer, R. A.

R. A. Sawyer, Experimental Spectroscopy (Dover Publications Inc., New York, 1963), p. 87.

Appl. Opt. (1)

M. Bottema, W. G. Fastie, H. W. Moos, Appl. Opt. 6, 1821 (1969).
[CrossRef]

Astrophys. J. (1)

H. W. Moos, W. G. Fastie, M. Bottema, Astrophys. J. 155, 887 (1969).
[CrossRef]

J. Quant. Spectrosc. Radiative Transfer (1)

A similar drive and general construction practice is described, by W. G. Fastie, J. Quant. Spectrosc. Radiative Transfer 3, 507 (1963), and in NASA Technical Note D-2250, 1964.
[CrossRef]

Other (3)

For a further discussion see J. L. Buckley, Ph.D. dissertation The Johns Hopkins University, 1969.

R. A. Sawyer, Experimental Spectroscopy (Dover Publications Inc., New York, 1963), p. 87.

J. Hennes, L. Dunkelman, in The Middle Ultraviolet: Its Science and Technology, A. E. S. Green, Ed. (John Wiley & Sons, Inc., New York, 1966), p. 356.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Derivation angle D vs angle of incidence for a 15° LiF prism.

Fig. 2
Fig. 2

Instrument cross section. E, entrance slit; B, baffle; D, diagonal mirror; P, planet exit slit; A, airglow exit slit.

Fig. 3
Fig. 3

Measured sensitivity and spectral resolution (full width at half maximum) of the airglow channel as a function of wavelength. The incident radiation is in the form of a very narrow spectral line.

Metrics