Abstract

The theory is developed for two types of narrow band filters. One is based on the Zeeman splitting of the line absorption coefficient; the other is based on the splitting of the anomalous dispersion curves in a Zeeman multiplet. The latter type filter is very similar to the Lyot-Öhman filter. It uses however the Macaluso-Corbino effect instead of the linear birefringence of crystals. It is capable of giving very much narrower transmission profiles than the Lyot-Öhman filter and it has a very wide field.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
    [CrossRef]
  2. M. Cimino, A. Cacciani, N. Sopranzi, Appl. Opt. 7, 1654 (1968).
    [CrossRef] [PubMed]
  3. D. Macaluso, O. M. Corbino, Compt. Rend. 127, 548 (1898).
  4. A. Righi, Compt. Rend. 127, 216 (1898).
  5. A. Righi, Compt. Rend. 128, 45 (1899).
  6. W. Voigt, Magneto- und Elektrooptik (B. G. TeubnerLeipzig, 1908).
  7. J. M. Beckers, Solar Phys. 9, 372 (1969).
    [CrossRef]
  8. R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934).
  9. B. Lyot, Ann. Astrophys. 7, 31 (1944).
  10. M. Cimino, Rome Observatory, Rome, Italy private communication.
  11. Y. Öhman, Stockholms Obs. Ann. 19, 3 (1956).

1969

J. M. Beckers, Solar Phys. 9, 372 (1969).
[CrossRef]

1968

M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
[CrossRef]

M. Cimino, A. Cacciani, N. Sopranzi, Appl. Opt. 7, 1654 (1968).
[CrossRef] [PubMed]

1956

Y. Öhman, Stockholms Obs. Ann. 19, 3 (1956).

1944

B. Lyot, Ann. Astrophys. 7, 31 (1944).

1899

A. Righi, Compt. Rend. 128, 45 (1899).

1898

D. Macaluso, O. M. Corbino, Compt. Rend. 127, 548 (1898).

A. Righi, Compt. Rend. 127, 216 (1898).

Beckers, J. M.

J. M. Beckers, Solar Phys. 9, 372 (1969).
[CrossRef]

Cacciani, A.

M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
[CrossRef]

M. Cimino, A. Cacciani, N. Sopranzi, Appl. Opt. 7, 1654 (1968).
[CrossRef] [PubMed]

Cimino, M.

M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
[CrossRef]

M. Cimino, A. Cacciani, N. Sopranzi, Appl. Opt. 7, 1654 (1968).
[CrossRef] [PubMed]

M. Cimino, Rome Observatory, Rome, Italy private communication.

Corbino, O. M.

D. Macaluso, O. M. Corbino, Compt. Rend. 127, 548 (1898).

Lyot, B.

B. Lyot, Ann. Astrophys. 7, 31 (1944).

Macaluso, D.

D. Macaluso, O. M. Corbino, Compt. Rend. 127, 548 (1898).

Öhman, Y.

Y. Öhman, Stockholms Obs. Ann. 19, 3 (1956).

Righi, A.

A. Righi, Compt. Rend. 128, 45 (1899).

A. Righi, Compt. Rend. 127, 216 (1898).

Sopranzi, N.

M. Cimino, A. Cacciani, N. Sopranzi, Appl. Opt. 7, 1654 (1968).
[CrossRef] [PubMed]

M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
[CrossRef]

Voigt, W.

W. Voigt, Magneto- und Elektrooptik (B. G. TeubnerLeipzig, 1908).

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934).

Ann. Astrophys.

B. Lyot, Ann. Astrophys. 7, 31 (1944).

Appl. Opt.

Compt. Rend.

D. Macaluso, O. M. Corbino, Compt. Rend. 127, 548 (1898).

A. Righi, Compt. Rend. 127, 216 (1898).

A. Righi, Compt. Rend. 128, 45 (1899).

Solar Phys.

J. M. Beckers, Solar Phys. 9, 372 (1969).
[CrossRef]

M. Cimino, A. Cacciani, N. Sopranzi, Solar Phys. 3, 618 (1968).
[CrossRef]

Stockholms Obs. Ann.

Y. Öhman, Stockholms Obs. Ann. 19, 3 (1956).

Other

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934).

M. Cimino, Rome Observatory, Rome, Italy private communication.

W. Voigt, Magneto- und Elektrooptik (B. G. TeubnerLeipzig, 1908).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout of the Righi effect filter. P = polarizers, W = λ/4 plate, 1 and 2 = vapor elements, H = magnetic field.

Fig. 2
Fig. 2

Transmission of the Righi effect filter parts 1 (upper), 2 (middle), and 1 + 2 (lower). Abscissa quantity υ = Δλ/ΔλD. Parameter in curves = t0 × ΔλH/ΔλD = 5.

Fig. 3
Fig. 3

Transmission of the Righi effect filter part 1 for t0 = 100. ΔλH/ΔλD = 5.

Fig. 4
Fig. 4

Layout of the Macaluso-Corbino effect filter. Notation as in Fig. 1.

Fig. 5
Fig. 5

Transmission of the Macaluso-Corbino effect filter elements. Parameter is the element number (see Fig. 4). Curve # 7 is the total transmission of the filter. ΔλH/ΔλD = 2.0.

Fig. 6
Fig. 6

Transmission of the Macaluso-Corbino effect filter for ΔλH/ΔλD = 2, 3, and 4.

Tables (1)

Tables Icon

Table I Purity of the Righi Effect Filter and the Filter’s Peak Transmission (in parentheses) for Various Values of the Voigt Parameter a and for Various Optical Thickness t01 and t02

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

d I / d τ = ( 1 + η I ) ( I B ) η V V ,
d Q / d τ = ( 1 + η I ) Q + ρ R U
d U / d τ = ( 1 + η I ) U ρ R Q ,
d V / d τ = ( 1 + η I ) V η V ( I B ) ,
I 1 = 0.5 ( 1 B ) [ exp { ( 1 + η I + η V ) T } + exp { ( 1 + η I η V ) T } ] + B ,
V 1 = 0.5 ( 1 B ) [ exp { ( 1 + η I + η V ) T } exp { ( 1 + η I η V ) T } ] + B ,
Q 1 = exp { ( 1 + η I ) T } cos ( ρ R T ) ,
U 1 = exp { ( 1 + η I ) T } sin ( ρ R T )
I 2 = Q 2 = 0.25 ( 1 B ) [ exp { ( 1 + η I + η V ) T } + exp { ( 1 + η I η V ) T } ] + 0.5 B 0.5 exp { ( 1 + η I ) T } cos ( ρ R T ) .
T 1 ( Δ λ ) = 0.125 [ exp { φ ( Δ λ + Δ λ H ) t 0 } + exp { φ ( Δ λ Δ λ H ) t 0 } ] 0.25 exp { [ φ ( Δ λ + Δ λ H ) + φ ( Δ λ Δ λ H ) ] t 0 } × cos { [ f ( Δ λ + Δ λ H ) f ( Δ λ Δ λ H ) ] t 0 } ,
I 1 = 0.5 ( 2 B ) exp { ( 1 + η I + η V ) T } 0.5 B exp { ( 1 + η I η V ) T } + B ,
Q 1 = 0 ,
U 1 = 0 ,
V 1 = 0.5 ( 2 B ) exp { ( 1 + η I + η V ) T } + 0.5 B exp { ( 1 + η I η V ) T }
T 2 ( Δ λ ) = exp { φ ( Δ λ + Δ λ H ) t 0 } .
P = 1 + 1 T ( υ ) d υ / 120 + 120 T ( υ ) d υ ,
T ( Δ λ ) = 0.25 [ exp { φ ( Δ λ + Δ λ H ) t 0 } + exp { φ ( Δ λ Δ λ H ) t 0 } ] + 0.5 exp { [ φ ( Δ λ + Δ λ H ) + φ ( Δ λ Δ λ H ) ] t 0 } × cos { [ f ( Δ λ + Δ λ H ) f ( Δ λ Δ λ H ) ] t 0 } .
T 1 ( Δ λ ) 0.25 0.25 cos { [ f ( Δ λ + Δ λ H ) f ( Δ λ Δ λ H ) ] t 0 } , and
T ( Δ λ ) 0.50 + 0.50 cos { [ f ( Δ λ + Δ λ H ) f ( Δ λ Δ λ H ) ] t 0 } .
T 1 ( Δ λ ) = 0.25 0.25 [ ρ W 2 ρ 2 cos 2 2 χ + ( 1 ρ W 2 ρ 2 cos 2 2 χ ) cos ( ρ t 0 / cos γ ) ] ,
T ( Δ λ ) = 0.50 + 0.50 [ ρ W 2 ρ 2 cos 2 2 χ + ( 1 ρ W 2 ρ 2 cos 2 2 χ ) cos ( ρ t 0 / cos γ ) ] ,
ρ R = ( 0.282 υ H / υ 2 ) cos γ , and
ρ W = ( 0.141 υ H 2 / υ 3 ) sin 2 γ .
ρ / cos γ 0.282 υ H υ 2 [ 1 + Δ 2 sin 4 γ ( 2 υ ) 2 cos 2 γ ] 1 2
0.282 υ H υ 2 ( 1 + Δ 2 8 υ 2 γ 4 ) for small γ .
γ 0 4 υ 2 / υ H 2 2 N
T min = ρ W 2 ρ 2 cos 2 2 χ υ H 2 4 υ 2 γ 4 cos 2 2 χ υ H 2 4 υ 2 γ 4 .

Metrics