Abstract

A balloon-borne spectrometer was used to measure the atmospheric absorption of solar radiation in the 9–10-μ region as a function of altitude. Among the numerous spectra recorded, several were made with very long optical paths above the troposphere obtained from floating altitude (~30 km) while the sun set. When the experimental results are compared with calculated spectra, based on line by line parameters of the ν3 and ν1 fundamentals of ordinary ozone, 16O3, combined with the Curtis-Godson approximation, large discrepancies are found for the long path spectra. It is shown that the hot bands ν3 + ν2ν2 and ν3 + ν3ν3 of the 16O3, and the ν3 fundamentals of the isotopic species 16O18O16O and 16O16O18O, can contribute significant absorption for long paths such as obtained in this experiment. Such long paths also give rise to significant absorptions by the ν3ν1 and the ν3 − 2ν2° bands of CO2. Including these weak bands in the calculated spectra leads to good agreement with the observed data.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Murcray, F. H. Murcray, W. J. Williams, Appl. Opt. 6, 191 (1967).
    [CrossRef] [PubMed]
  2. D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, Nature 218, 78 (1968).
    [CrossRef]
  3. D. G. Murcray, F. H. Murcray, W. J. Williams, T. G. Kyle, A. Goldman, Appl. Opt. 8, 2519 (1969).
    [CrossRef] [PubMed]
  4. J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
    [CrossRef]
  5. C. B. Farmer, P. J. Key, Appl. Opt. 4, 1051 (1965).
    [CrossRef]
  6. M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).
  7. S. A. Clough, F. X. Kneizys, “Ozone Absorption in the 9.0 Micron Region,” Scientific Rept. AFCRL-65-862, 1965.
  8. C. D. Rodgers, C. D. Walshaw, Quart. J. Roy. Meteor. Soc. 92, 67 (1966).
    [CrossRef]
  9. A. E. S. Green, Appl. Opt. 3, 203 (1964).
    [CrossRef]
  10. T. L. Altshuler, Fig. 18, Document No. 61SD199, December1961, General Electric, MSVD, Philadelphia, Pa.
  11. U. S. Standard Atmosphere (U. S. Government Printing Office, Washington, D. C., 1962).
  12. A. Goldman, T. G. Kyle, Appl. Opt. 7, 1167 (1968).
    [CrossRef] [PubMed]
  13. C. D. Walshaw, Ph.D. Thesis, Cambridge University, 1954.
  14. D. J. McCaa, J. H. Shaw, J. Mol. Spectrosc. 25, 374 (1968).
    [CrossRef]
  15. R. H. Hughes, J. Chem. Phys. 24, 131 (1956).
    [CrossRef]
  16. L. Pierce, J. Chem. Phys. 24, 139 (1956).
    [CrossRef]
  17. T. K. McCubbin, T. R. Mooney, J. Quant. Spectrosc. Radiative Transfer 8, 1255 (1968).
    [CrossRef]
  18. R. F. Calfee, W. S. Benedict, NBS Tech. Note No. 332 (1966).

1969 (1)

1968 (4)

A. Goldman, T. G. Kyle, Appl. Opt. 7, 1167 (1968).
[CrossRef] [PubMed]

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, Nature 218, 78 (1968).
[CrossRef]

D. J. McCaa, J. H. Shaw, J. Mol. Spectrosc. 25, 374 (1968).
[CrossRef]

T. K. McCubbin, T. R. Mooney, J. Quant. Spectrosc. Radiative Transfer 8, 1255 (1968).
[CrossRef]

1967 (1)

1966 (1)

C. D. Rodgers, C. D. Walshaw, Quart. J. Roy. Meteor. Soc. 92, 67 (1966).
[CrossRef]

1965 (1)

1964 (1)

1957 (1)

M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).

1956 (2)

R. H. Hughes, J. Chem. Phys. 24, 131 (1956).
[CrossRef]

L. Pierce, J. Chem. Phys. 24, 139 (1956).
[CrossRef]

1952 (1)

J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
[CrossRef]

Altshuler, T. L.

T. L. Altshuler, Fig. 18, Document No. 61SD199, December1961, General Electric, MSVD, Philadelphia, Pa.

Benedict, W. S.

R. F. Calfee, W. S. Benedict, NBS Tech. Note No. 332 (1966).

Calfee, R. F.

R. F. Calfee, W. S. Benedict, NBS Tech. Note No. 332 (1966).

Classen, H. H.

J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kneizys, “Ozone Absorption in the 9.0 Micron Region,” Scientific Rept. AFCRL-65-862, 1965.

Farmer, C. B.

Goldman, A.

Green, A. E. S.

Hughes, R. H.

R. H. Hughes, J. Chem. Phys. 24, 131 (1956).
[CrossRef]

Key, P. J.

Kneizys, F. X.

S. A. Clough, F. X. Kneizys, “Ozone Absorption in the 9.0 Micron Region,” Scientific Rept. AFCRL-65-862, 1965.

Kyle, T. G.

McCaa, D. J.

D. J. McCaa, J. H. Shaw, J. Mol. Spectrosc. 25, 374 (1968).
[CrossRef]

McCubbin, T. K.

T. K. McCubbin, T. R. Mooney, J. Quant. Spectrosc. Radiative Transfer 8, 1255 (1968).
[CrossRef]

Migeotte, M.

M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).

Mooney, T. R.

T. K. McCubbin, T. R. Mooney, J. Quant. Spectrosc. Radiative Transfer 8, 1255 (1968).
[CrossRef]

Murcray, D. G.

Murcray, F. H.

Neven, L.

M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).

Oxholm, M. L.

J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
[CrossRef]

Pierce, L.

L. Pierce, J. Chem. Phys. 24, 139 (1956).
[CrossRef]

Rodgers, C. D.

C. D. Rodgers, C. D. Walshaw, Quart. J. Roy. Meteor. Soc. 92, 67 (1966).
[CrossRef]

Shaw, J. H.

D. J. McCaa, J. H. Shaw, J. Mol. Spectrosc. 25, 374 (1968).
[CrossRef]

J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
[CrossRef]

Swensson, J.

M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).

Walshaw, C. D.

C. D. Rodgers, C. D. Walshaw, Quart. J. Roy. Meteor. Soc. 92, 67 (1966).
[CrossRef]

C. D. Walshaw, Ph.D. Thesis, Cambridge University, 1954.

Williams, W. J.

Appl. Opt. (5)

Astrophys. J. (1)

J. H. Shaw, M. L. Oxholm, H. H. Classen, Astrophys. J. 116, 554 (1952).
[CrossRef]

J. Chem. Phys. (2)

R. H. Hughes, J. Chem. Phys. 24, 131 (1956).
[CrossRef]

L. Pierce, J. Chem. Phys. 24, 139 (1956).
[CrossRef]

J. Mol. Spectrosc. (1)

D. J. McCaa, J. H. Shaw, J. Mol. Spectrosc. 25, 374 (1968).
[CrossRef]

J. Quant. Spectrosc. Radiative Transfer (1)

T. K. McCubbin, T. R. Mooney, J. Quant. Spectrosc. Radiative Transfer 8, 1255 (1968).
[CrossRef]

Mem. Soc. Roy. Sci. Liege (1)

M. Migeotte, L. Neven, J. Swensson, Mem. Soc. Roy. Sci. Liege 2 (1957).

Nature (1)

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, Nature 218, 78 (1968).
[CrossRef]

Quart. J. Roy. Meteor. Soc. (1)

C. D. Rodgers, C. D. Walshaw, Quart. J. Roy. Meteor. Soc. 92, 67 (1966).
[CrossRef]

Other (5)

C. D. Walshaw, Ph.D. Thesis, Cambridge University, 1954.

S. A. Clough, F. X. Kneizys, “Ozone Absorption in the 9.0 Micron Region,” Scientific Rept. AFCRL-65-862, 1965.

R. F. Calfee, W. S. Benedict, NBS Tech. Note No. 332 (1966).

T. L. Altshuler, Fig. 18, Document No. 61SD199, December1961, General Electric, MSVD, Philadelphia, Pa.

U. S. Standard Atmosphere (U. S. Government Printing Office, Washington, D. C., 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a)–(f). Samples of the reduced data obtained 7 December 1967 at Holloman, New Mexico, showing the absorption in the 9–10-μ region as a function of altitude, from ground up to floating altitude (Recs. 3–86). The zero transmittance level of successive samples is displaced by 20%. The record details are given in Table II.

Fig. 2
Fig. 2

(a)–(f). Samples of the reduced data obtained 7 December 1967 at Holloman, New Mexico, showing the absorption in the 9–10-μ region as observed from floating altitude while the sun set (Recs. 98–141). The zero transmittance level of successive samples is displaced by 20%. The record details are given in Table II.

Fig. 3
Fig. 3

Samples of the reduced data obtained 12 August 1968 at Holloman, New Mexico, showing the absorption in the 9–10-μ region as observed from floating altitude while the sun set (Recs. 67–74). The zero transmittance level of successive records is displaced by 30%. The record details are given in Table III.

Fig. 4
Fig. 4

A comparison between data obtained during the two different flights, Rec. 139 of the December 1967 flight (black curve, altitude 29.7 km, θ = 91.5°) and Rec. 69 of the August 1968 flight (gray curve, altitude 30.5 km, θ = 91.2°). Rec. 139 was degraded in resolution.

Fig. 5
Fig. 5

Comparisons of transmittance of the 9.6-μ band obtained by exact line by line calculation, black curves, with that obtained by line by line combined with Curtis-Godson approximation, gray curves. The curves are calculated using the ozone vertical distribution described in Eq. (1) with W = 0.218 atm · cm, yP = 25.0 km, and h = 4.63 km. For case A, y0 = 2.07 km and secθ = 2.23, while for case B, y0 = 11.83 km and secθ = 1.71. Triangular slit function was used in these calculations, with 2a = 1 cm−1. Here α° = 0.085 cm−1· atm−1 and T = 233 K.

Fig. 6
Fig. 6

A comparison of transmittance of the ν3 and the ν1 ozone bands obtained by a line by line calculation using a Lorentz line shape (upper curve) with that obtained by using a Voigt line shape (lower curve). Here T = 226 K, α° = 0.07 cm−1· atm−1, αD = 0.00095 cm−1, pressure = 0.012 atm, path = 20.0at m · cm, and the resolution is 0.72 cm−1. The two curves are displaced by 40%.

Fig. 7
Fig. 7

The effect of the addition of the weak bands on long path spectra in the 9.6-μ region. Curve A: Absorption by the 16O 18O 16O ν3 band. Curve B: Absorption by the 16O 16O 18O ν3 band. Curve C: Absorption by the 16O3ν3 + ν2ν2 band. Curve D: Absorption by the 16O3ν3 band. Curve E: Absorption by the 16O3ν3 band together with the contribution from curves A, B. Curve F: Absorption by the 16O3ν3 band together with the contributions from curves A, B, C. For all curves T = 226 K, p = 0.012 atm, α° = 0.100 cm−1· atm−1, the resolution is 0.32 cm−1, and the optical path is 10.0 atm · cm. Curves A, B, C are displaced by 20%, and curves D, E, F by 40%.

Fig. 8
Fig. 8

Comparison of reduced data (Rec. 139, December 1967 flight, black curves) with calculated spectra (gray curves) based on the unmodified (curve A) and the modified (curve B) line set. Here T = 226 K, p = 0.012 atm, α° = 0.080 cm−1· atm−1, and a resolution of 0.32 cm−1 were used for the calculated spectra of both O3 and CO2. The optical paths used are 3.0 atm · cm for O3 and 830 atm · cm for CO2.

Fig. 9
Fig. 9

Comparison of reduced data (Rec. 73, August 1968 flight, black curves) with calculated spectra (gray curves) based on the unmodified (curve A) and the modified (curve B) line set. Here T = 226 K, p = 0.012 atm, α° = 0.080 cm−1· atm−1, and a resolution of 0.72 cm−1 were used for the calculated spectra of both O3 and CO2. The optical paths used are 40.0 atm · cm for O3 and 7500 atm · cm for CO2.

Tables (3)

Tables Icon

Table I Weak Bands Included in Line by Line Calculations for Sunset Spectra

Tables Icon

Table II Balloon Flight 7 December 1967. Times, Altitudes, Pressures, and Zenith Angles for Selected Records

Tables Icon

Table III Balloon Flight 12 August 1968. Times, Altitudes, Pressures, and Zenith Angles for Selected Records

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ ( y ) = W exp [ ( y y p ) / h ] / h { 1 + exp [ ( y y p ) / h ] } 2 ,
W = 0.218 cm · atm , y p = 23.25 km , h = 4.53 km ,
p E = p E ( y 0 ) = y 0 p ( y ) ρ ( y ) d y y 0 ρ ( y ) d y = y 0 p ( y ) ρ ( y ) d y W { 1 + exp [ ( y 0 y p ) / h ] } 1 .
T ν = exp [ sec θ π ( y 0 ρ ( y ) d y ) i = 1 N S i 0 α ¯ i ( ν ν o i ) 2 α ¯ i 2 ] .
S 0 ( T ) = S 0 ( T 0 ) ( T 0 / T ) 3 2 exp { 1.439 E [ ( 1 / T ) ( 1 / T 0 ) ] } ,
T ¯ ν = ν a ν + a g ( ν ν ) T ν d ν / ν a ν + a g ( ν ν ) d ν ,
T ν = exp { sec θ π i = 1 N S i 0 y 0 ρ ( y ) α i 0 p ( y ) d y ( ν ν o i ) 2 + [ p ( y ) α i 0 ] 2 } .
α D ( cm 1 ) = 3.58 × 1 0 7 ν 0 ( cm 1 ) [ T ( K ) / M ] 1 2 ,

Metrics