Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Thompson, J. H. Ward, W. R. Zinky, Appl. Opt. 6, 519 (1967).
    [CrossRef] [PubMed]
  2. J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography, (Addison-Wesley Publishing Co., Inc., Reading, Mass.1967), p. 41.
  3. J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
    [CrossRef]
  4. G. B. Parrent, B. J. Thompson, Opt. Acta 11, 183 (1964).
    [CrossRef]
  5. B. Tatian, J. Opt. Soc. Amer. 55, 1014 (1965).
  6. P. C. Roetling, “Image Evaluation Techniques,” Research Trends, Winter, 1963–64, p. 2.

1967

1966

J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
[CrossRef]

1965

B. Tatian, J. Opt. Soc. Amer. 55, 1014 (1965).

1964

G. B. Parrent, B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

DeVelis, J. B.

J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
[CrossRef]

J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography, (Addison-Wesley Publishing Co., Inc., Reading, Mass.1967), p. 41.

Parrent, G. B.

J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
[CrossRef]

G. B. Parrent, B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Reynolds, G. O.

J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography, (Addison-Wesley Publishing Co., Inc., Reading, Mass.1967), p. 41.

Roetling, P. C.

P. C. Roetling, “Image Evaluation Techniques,” Research Trends, Winter, 1963–64, p. 2.

Tatian, B.

B. Tatian, J. Opt. Soc. Amer. 55, 1014 (1965).

Thompson, B. J.

B. J. Thompson, J. H. Ward, W. R. Zinky, Appl. Opt. 6, 519 (1967).
[CrossRef] [PubMed]

J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
[CrossRef]

G. B. Parrent, B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Ward, J. H.

Zinky, W. R.

Appl. Opt.

J. Opt. Soc. Amer.

J. B. DeVelis, G. B. Parrent, B. J. Thompson, J. Opt. Soc. Amer. 56, 423 (1966).
[CrossRef]

B. Tatian, J. Opt. Soc. Amer. 55, 1014 (1965).

Opt. Acta

G. B. Parrent, B. J. Thompson, Opt. Acta 11, 183 (1964).
[CrossRef]

Other

P. C. Roetling, “Image Evaluation Techniques,” Research Trends, Winter, 1963–64, p. 2.

J. B. DeVelis, G. O. Reynolds, Theory and Applications of Holography, (Addison-Wesley Publishing Co., Inc., Reading, Mass.1967), p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The sum D1 + D2 gives the reconstruction. As n increases, D(r) approaches the normalized rectangular function representing the wire.

Fig. 2
Fig. 2

A microdensitometer trace of an edge in a photograph produces a relatively smooth function. Using the slope at the steepest point gives a short-cut technique for determining the resolution of the system.

Fig. 3
Fig. 3

Sketch of normalized reconstruction, D(ξ), vs position, ξ, for n = 2. Tangent at ξ = ±a gives steepest slope from which edge width, w, and resolution can be found.

Fig. 4
Fig. 4

Relative edge width or smear of the reconstruction of a wire of diameter d = 2a vs the number of orders recorded on the hologram.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( x ¯ ) = 1 k π z ( sin k | x ¯ | 2 2 z ) D ˜ ( x ¯ λ z ) + k 2 4 π 2 z 2 | D ˜ ( x ¯ λ z ) | 2 ,
I ( x ) = 1 2 k a 2 z ( sin k x 2 2 z ) sin c ( 2 π a x λ z ) + k 2 a 4 z 2 [ sin c ( 2 π a x λ z ) ] 2 ,
D ˜ ( x / λ z ) = 2 π a 2 sin c ( 2 π a x / λ z ) .
I ( ξ ) = 1 + D ( ξ ) ,
D ( ξ ) = 2 π a 2 sin c ( 2 π a x λ z ) exp [ 2 π i ( x / λ z ) ξ ] d ( x λ z ) .
D ( ξ ) = a 0 x n sin [ ( 2 π x / λ z ) ( a + ξ ) ] x × d x + a 0 x n sin [ ( 2 π x / λ z ) ( a ξ ) ] x d x ,
D ( r ) = a Si [ n π ( 1 + r ) ] + a Si [ n π ( 1 r ) ]
D ( r ) = D 1 ( r ) + D 2 ( r )
m ( ξ ) = 1 π ξ 0 x n sin [ ( 2 π x / λ z ) ( a + ξ ) ] d x x + 1 π ξ 0 x n sin [ ( 2 π x / λ z ) ( a ξ ) ] d x x .
m ( ξ ) = 1 π ( 1 a + ξ ) sin [ n π ( 1 + ξ a ) ] 1 π ( 1 a ξ ) sin [ n π ( 1 ξ a ) ] ,
( a ξ m ) sin ( n π ξ m a ) + n π ( a + ξ m ) cos ( n π ξ m a ) = 0.
left edge : m ( a ) = n / a , right edge : m ( a ) = n / a .
| m ( ± a ) | = n / a = 1 / w
w / d = 1 / 2 n realative edge smear .

Metrics