Abstract

A digital computer and automatic plotter have been used to produce a series of perspective views of a computer-stored three-dimensional object which is slightly rotated for each view. All of these views are combined together optically to produce a final hologram which can be viewed in high ambient light conditions. The reconstructed image appears three dimensional since each eye looks through a different holographic strip corresponding to a different view of the three-dimensional object. The net result is a technique requiring only seconds of computer time and some possibly automated optical manipulations to produce extremely high quality holograms of computer-stored three-dimensional objects.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Jorgensen, J. Opt. Soc. Amer. 59, 498 (1969).
  2. M. C. King, Appl. Opt. 7, 1641 (1968).
    [CrossRef] [PubMed]
  3. J. T. McCrickerd, N. George, Appl. Phys. Lett. 12, 10 (1968).
    [CrossRef]
  4. N. George, J. T. McCrickerd, M. M. T. Chang, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 161.
    [CrossRef]
  5. S. Lu, Laser Focus 5, 36 (1969).
  6. J. D. Redman, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 117.
    [CrossRef]
  7. J. D. Redman, J. Sci. Instrum. 1, 821 (1968).
    [CrossRef]
  8. J. D. Redman, Nature 220, 58 (1968).
    [CrossRef] [PubMed]
  9. B. G. Saunders, Appl. Opt. 7, 1499 (1968).
    [CrossRef] [PubMed]
  10. G. W. Stroke, Phys. Lett. 23, 525 (1966).
    [CrossRef]
  11. L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
    [CrossRef]
  12. A. M. Noll, Computers and Automation 14, 32 (1965).
  13. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959), p. 440.

1969

D. W. Jorgensen, J. Opt. Soc. Amer. 59, 498 (1969).

S. Lu, Laser Focus 5, 36 (1969).

1968

J. D. Redman, J. Sci. Instrum. 1, 821 (1968).
[CrossRef]

J. D. Redman, Nature 220, 58 (1968).
[CrossRef] [PubMed]

B. G. Saunders, Appl. Opt. 7, 1499 (1968).
[CrossRef] [PubMed]

M. C. King, Appl. Opt. 7, 1641 (1968).
[CrossRef] [PubMed]

J. T. McCrickerd, N. George, Appl. Phys. Lett. 12, 10 (1968).
[CrossRef]

1966

G. W. Stroke, Phys. Lett. 23, 525 (1966).
[CrossRef]

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

1965

A. M. Noll, Computers and Automation 14, 32 (1965).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959), p. 440.

Chang, M. M. T.

N. George, J. T. McCrickerd, M. M. T. Chang, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 161.
[CrossRef]

George, N.

J. T. McCrickerd, N. George, Appl. Phys. Lett. 12, 10 (1968).
[CrossRef]

N. George, J. T. McCrickerd, M. M. T. Chang, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 161.
[CrossRef]

Jorgensen, D. W.

D. W. Jorgensen, J. Opt. Soc. Amer. 59, 498 (1969).

King, M. C.

Lu, S.

S. Lu, Laser Focus 5, 36 (1969).

McCrickerd, J. T.

J. T. McCrickerd, N. George, Appl. Phys. Lett. 12, 10 (1968).
[CrossRef]

N. George, J. T. McCrickerd, M. M. T. Chang, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 161.
[CrossRef]

Noll, A. M.

A. M. Noll, Computers and Automation 14, 32 (1965).

Redman, J. D.

J. D. Redman, Nature 220, 58 (1968).
[CrossRef] [PubMed]

J. D. Redman, J. Sci. Instrum. 1, 821 (1968).
[CrossRef]

J. D. Redman, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 117.
[CrossRef]

Rosen, L.

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

Saunders, B. G.

Stroke, G. W.

G. W. Stroke, Phys. Lett. 23, 525 (1966).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959), p. 440.

Appl. Opt.

Appl. Phys. Lett.

J. T. McCrickerd, N. George, Appl. Phys. Lett. 12, 10 (1968).
[CrossRef]

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

Computers and Automation

A. M. Noll, Computers and Automation 14, 32 (1965).

J. Opt. Soc. Amer.

D. W. Jorgensen, J. Opt. Soc. Amer. 59, 498 (1969).

J. Sci. Instrum.

J. D. Redman, J. Sci. Instrum. 1, 821 (1968).
[CrossRef]

Laser Focus

S. Lu, Laser Focus 5, 36 (1969).

Nature

J. D. Redman, Nature 220, 58 (1968).
[CrossRef] [PubMed]

Phys. Lett.

G. W. Stroke, Phys. Lett. 23, 525 (1966).
[CrossRef]

Other

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1959), p. 440.

J. D. Redman, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 117.
[CrossRef]

N. George, J. T. McCrickerd, M. M. T. Chang, in Proceedings of the SPIE Seminar-in-Depth on Holography (May1968), p. 161.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Top view of the three-dimensional point P with coordinates (xp, yp, zp) being perspectively projected onto the projection plane located a distance R from the origin. The viewing point V is a distance F from the projection plane; Q with coordinates (xQ, yQ) is the projection. The projection planes and viewing points are rotated around the origin to produce a series of N perspective projections for later combination into the composite hologram.

Fig. 2
Fig. 2

The composite-hologram recording apparatus takes the 35-mm film from the microfilm plotter and projects one frame at a time onto the diffuse screen. A hologram of each view is recorded on a photographic plate at a distance D from the diffuse screen with an off-axis reference beam. The distance D is conceptually similar to R in Fig. 1. A mask with a single vertical slit ΔX wide is translated by ΔX between each exposure. One strip hologram is formed for each microfilm frame.

Fig. 3
Fig. 3

The composite hologram reconstructs as if it were a single hologram of a real subject.

Fig. 4
Fig. 4

The hologram copying arrangement reconstructs the composite hologram with its conjugate reference beam. The real image is focused onto another photographic plate where an image plane hologram is formed.

Fig. 5
Fig. 5

A dicromated gelatin image plane copy of a computer generated hologram being reconstructed under ordinary lighting conditions with a high intensity lamp. The image was so bright that the voltage to the bulb was lowered to not overexpose the reconstructed image in this photograph.

Fig. 6
Fig. 6

When the diameter a of the inidividual hologram is made small the focal tolerance ΔZ of the imaging system can be made larger than the distance of the most distant object point P from the image plane. For this case the stereoscopic image and the real image of P are located at the same position.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x Q = x p [ F / ( R z p ) ] , y Q = y p [ F / ( R z p ) ] ,
Δ X < 3 D / ( D + d ) ,
Δ Z = ± 3.2 ( λ / π ) ( f / a ) 2 ± 1 2 ( f / a ) 2 λ ,

Metrics