Abstract

Luminous flux was measured from an underwater target illuminated by circularly polarized lamp. Backscatter was measured with and without a circular analyzer on the telephotometer. Turbidity of the water was controlled by adding polystyrene spheres of relative refractive index m = 1.20. Contrasts were determined as a function of particle diameter and concentration for spheres ranging from 0.126 μ to 1.099 μ and for three size distributions from 6 μ to 100 μ. A ratio comparison of the contrasts showed a definite improvement for scatterers of diameters < 1 μ. Contrast degraded for CP illuminated scattering from spheres in the 1–100-μ diam range. Considering the ocean’s scatterer-size distributions, circular polarization will probably most improve contrast in the vertical region from the lower euphotic zone to a few meters above bottom.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Gilbert, J. C. Pernika, Appl. Opt. 6, 741 (1967).
    [CrossRef] [PubMed]
  2. H. C. Van De Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1967).
  3. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).
  4. G. Dietrich, General Oceanography (John Wiley & Sons, Inc., New York, 1963).
  5. S. Q. Duntley, J. Opt. Soc. Amer. 53, 214 (1963).
    [CrossRef]
  6. J. E. Tyler, J. Opt. Soc. Amer. 47, 745 (1957).
    [CrossRef]
  7. J. E. Tyler, Limnol. Oceanog. 6, 451 (1961).
    [CrossRef]
  8. W. V. Burt, Ph.D. Dissertation in oceanography, University of California, Los Angeles, May1955.
  9. G. D. Gilbert, “Deep Sea Light Attenuation Measurements at 2000 Meter Depths,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 3994), December1965.
  10. G. D. Gilbert, R. O. Rue, “Light Attenuation Measurements off the Coast of Baja California,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 4343), May1967.
  11. N. G. Jerlov, “Optical Studies of Ocean Waters,” Repts. Swed. Deep-Sea Expedition 3, 11 (1951).
  12. H. V. Sverdrup, M. W. Johnson, R. V. Fleming, The Oceans (Prentice-Hall, Englewood Cliffs, N. J.1942), pp. 946–993.
  13. W. H. Tolbert, “On the Concentration and Size Distribution of Particulate Matter in Sea Water,” U. S. Naval Mine Defense Lab.Panama City, Fla., Tech. Paper (TP 168), August1959.
  14. N. G. Jerlov, Tellus 7, 218 (1955).
    [CrossRef]

1967 (1)

1963 (1)

S. Q. Duntley, J. Opt. Soc. Amer. 53, 214 (1963).
[CrossRef]

1961 (1)

J. E. Tyler, Limnol. Oceanog. 6, 451 (1961).
[CrossRef]

1957 (1)

J. E. Tyler, J. Opt. Soc. Amer. 47, 745 (1957).
[CrossRef]

1955 (1)

N. G. Jerlov, Tellus 7, 218 (1955).
[CrossRef]

1951 (1)

N. G. Jerlov, “Optical Studies of Ocean Waters,” Repts. Swed. Deep-Sea Expedition 3, 11 (1951).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

Burt, W. V.

W. V. Burt, Ph.D. Dissertation in oceanography, University of California, Los Angeles, May1955.

Dietrich, G.

G. Dietrich, General Oceanography (John Wiley & Sons, Inc., New York, 1963).

Duntley, S. Q.

S. Q. Duntley, J. Opt. Soc. Amer. 53, 214 (1963).
[CrossRef]

Fleming, R. V.

H. V. Sverdrup, M. W. Johnson, R. V. Fleming, The Oceans (Prentice-Hall, Englewood Cliffs, N. J.1942), pp. 946–993.

Gilbert, G. D.

G. D. Gilbert, J. C. Pernika, Appl. Opt. 6, 741 (1967).
[CrossRef] [PubMed]

G. D. Gilbert, “Deep Sea Light Attenuation Measurements at 2000 Meter Depths,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 3994), December1965.

G. D. Gilbert, R. O. Rue, “Light Attenuation Measurements off the Coast of Baja California,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 4343), May1967.

Jerlov, N. G.

N. G. Jerlov, Tellus 7, 218 (1955).
[CrossRef]

N. G. Jerlov, “Optical Studies of Ocean Waters,” Repts. Swed. Deep-Sea Expedition 3, 11 (1951).

Johnson, M. W.

H. V. Sverdrup, M. W. Johnson, R. V. Fleming, The Oceans (Prentice-Hall, Englewood Cliffs, N. J.1942), pp. 946–993.

Pernika, J. C.

Rue, R. O.

G. D. Gilbert, R. O. Rue, “Light Attenuation Measurements off the Coast of Baja California,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 4343), May1967.

Sverdrup, H. V.

H. V. Sverdrup, M. W. Johnson, R. V. Fleming, The Oceans (Prentice-Hall, Englewood Cliffs, N. J.1942), pp. 946–993.

Tolbert, W. H.

W. H. Tolbert, “On the Concentration and Size Distribution of Particulate Matter in Sea Water,” U. S. Naval Mine Defense Lab.Panama City, Fla., Tech. Paper (TP 168), August1959.

Tyler, J. E.

J. E. Tyler, Limnol. Oceanog. 6, 451 (1961).
[CrossRef]

J. E. Tyler, J. Opt. Soc. Amer. 47, 745 (1957).
[CrossRef]

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1967).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

Appl. Opt. (1)

J. Opt. Soc. Amer. (2)

S. Q. Duntley, J. Opt. Soc. Amer. 53, 214 (1963).
[CrossRef]

J. E. Tyler, J. Opt. Soc. Amer. 47, 745 (1957).
[CrossRef]

Limnol. Oceanog. (1)

J. E. Tyler, Limnol. Oceanog. 6, 451 (1961).
[CrossRef]

Repts. Swed. Deep-Sea Expedition (1)

N. G. Jerlov, “Optical Studies of Ocean Waters,” Repts. Swed. Deep-Sea Expedition 3, 11 (1951).

Tellus (1)

N. G. Jerlov, Tellus 7, 218 (1955).
[CrossRef]

Other (8)

H. V. Sverdrup, M. W. Johnson, R. V. Fleming, The Oceans (Prentice-Hall, Englewood Cliffs, N. J.1942), pp. 946–993.

W. H. Tolbert, “On the Concentration and Size Distribution of Particulate Matter in Sea Water,” U. S. Naval Mine Defense Lab.Panama City, Fla., Tech. Paper (TP 168), August1959.

W. V. Burt, Ph.D. Dissertation in oceanography, University of California, Los Angeles, May1955.

G. D. Gilbert, “Deep Sea Light Attenuation Measurements at 2000 Meter Depths,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 3994), December1965.

G. D. Gilbert, R. O. Rue, “Light Attenuation Measurements off the Coast of Baja California,” U. S. Naval Ordnance Test Station, China Lake, Calif., Tech. Rept. (NOTS TP 4343), May1967.

H. C. Van De Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1967).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1965).

G. Dietrich, General Oceanography (John Wiley & Sons, Inc., New York, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Circular polarization for elimination of backscatter.

Fig. 2
Fig. 2

Photons reflecting externally and internally from smooth scattering particles.

Fig. 3
Fig. 3

Contrast-measuring apparatus.

Fig. 4
Fig. 4

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 0.126 μ.

Fig. 5
Fig. 5

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 0.234 μ.

Fig. 6
Fig. 6

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 0.357 μ.

Fig. 7
Fig. 7

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 0.557 μ.

Fig. 8
Fig. 8

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 0.796 μ.

Fig. 9
Fig. 9

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 1.099 μ.

Fig. 10
Fig. 10

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 6–14 μ.

Fig. 11
Fig. 11

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 25–55 μ.

Fig. 12
Fig. 12

Normalized contrast vs calculated attenuation coefficient—sphere diameter of 50–100 μ.

Fig. 13
Fig. 13

Effectiveness of CP contrast improvement vs sphere size for various attenuations.

Fig. 14
Fig. 14

Typical attenuation vs depth.

Tables (2)

Tables Icon

Table I Comparison of Calculated and Measured Attention Coefficients

Tables Icon

Table II Visibility Range Increases for Contrast Improvement Predicted from Experimental Data

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

C ( α ) = [ N t ( α ) N b ( α ) ] / N b ( α ) ,
α = N Q e x t ( π d 2 / 4 ) ,
Q e x t ( d ) = 2 4 sin ρ ρ + 4 ( 1 cos ρ ) ρ 2 ,
ρ = 2 π d λ ( m 1 )
α = Q e x t ( d ) π d 2 4 ( 0.1825 / d 3 ) V 1 ( V 1 + V 2 ) V 3 δ V i ,
N ( r ) = N ( 0 ) e α r ,
R C 1 = [ H t ( r 0 ) H B ( r 0 ) ] / H B ( r 0 ) ,
H B ( r 0 ) = H t ( r ) / ( R C 1 + 1 ) .
H ( r ) = ( K ρ A t / π ) ( J 0 e 2 α r / r 4 )
C 1 = [ H t ( r 1 ) H B ] / H B .
H t ( r 1 ) = H t ( r 0 ) [ ( C 1 + 1 ) / ( R C 1 + 1 ) ] .
4 ln r 1 + 2 α r 1 = 2 α r 0 + 4 ln r 0 + ln [ ( R C 1 + 1 ) / ( C 1 + 1 ) ] .

Metrics