Abstract

Maximum quantum efficiencies attainable with commercially available semitransparent photocathodes are near 30% (for blue light). Work in the Instrumentation Division at Ames Research Center, NASA, has achieved quantum efficiencies as high as 58% with these same photocathodes through the use of optical enhancement. Improvement ratios in the red and near ir are even larger, but of course, the original sensitivities are smaller at these wavelengths. In addition to simply improving sensitivity, effort is also directed toward extending the applicability of the technique. A new class of devices recently conceived at Ames Research Center will allow application of optical enhancement to TV camera tubes, image intensifiers, and other imaging detectors. This paper describes the optical enhancement work in detail with major emphasis on results in the areas mentioned above.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR 64-19April1964.
  2. W. D. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
    [CrossRef]
  3. G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
    [CrossRef]
  4. J. B. Oke, R. E. Schild, Appl. Opt. 7, 617 (1968).
    [CrossRef] [PubMed]
  5. E. G. Burroughs, Appl. Opt. 7, 2429 (1968).
    [CrossRef] [PubMed]
  6. W. D. Gunter, D. N. Jaynes, Appl. Opt. 6, 350 (1967).
    [CrossRef] [PubMed]
  7. W. D. Gunter, R. J. Jennings, G. R. Grant, Appl. Opt. 7, 2143 (1968).
    [CrossRef] [PubMed]
  8. W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
    [CrossRef]
  9. V. E. Kondrashov, A. S. Shefov, Akad. Nauk. SSSR Bull. Phys. Series 28, 1349 (1964).
  10. E. J. Wampler, Lick Observatory, University of California at Santa Cruz; private communication.
  11. T. Hirschfeld, Appl. Opt. 7, 443 (1968).
    [CrossRef] [PubMed]
  12. T. Hirschfeld, E. R. Schildkraut, paper presented at 15th Annual Spectroscopy Symposium of Canada, Toronto, 22 October 1968.
  13. F. Wooten, J. Appl. Phys. 37, 2965 (1966).
    [CrossRef]
  14. R. J. Jennings, W. D. Gunter, G. R. Grant, in preparation.
  15. K. Deutscher, K. Hirschberg, Phys. Stat. Sol. 27, 147 (1968).
  16. J. R. Sizelove, J. A. Love, Appl. Opt. 6, 443 (1967).
    [CrossRef] [PubMed]
  17. J. A. Love, J. R. Sizelove, Appl. Opt. 7, 1559 (1968).
    [CrossRef] [PubMed]
  18. R. B. Murray, J. J. Manning, IRE Trans. NS-7, 80 (1960).
  19. A. T. Young, Appl. Opt. 2, 51 (1963).
    [CrossRef]
  20. T. Hirschfeld, Appl. Opt. 5, 1337 (1966).
    [CrossRef] [PubMed]
  21. J. L. Gumnick, C. D. Hollish, IEEE Trans. NS-13, 72 (1966).
  22. N. J. Harrick, Internal Reflection Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 16.
  23. W. C. Livingston, Appl. Opt. 5, 1335 (1966).
    [CrossRef] [PubMed]
  24. W. D. Gunter, R. M. Brown, NASA, private communication.
  25. W. A. Hiltner, Ed. Astronomical Techniques (University of Chicago Press, Chicago, 1962), p. 128.

1969 (1)

W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
[CrossRef]

1968 (6)

1967 (2)

1966 (4)

F. Wooten, J. Appl. Phys. 37, 2965 (1966).
[CrossRef]

T. Hirschfeld, Appl. Opt. 5, 1337 (1966).
[CrossRef] [PubMed]

J. L. Gumnick, C. D. Hollish, IEEE Trans. NS-13, 72 (1966).

W. C. Livingston, Appl. Opt. 5, 1335 (1966).
[CrossRef] [PubMed]

1965 (2)

W. D. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[CrossRef]

G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
[CrossRef]

1964 (1)

V. E. Kondrashov, A. S. Shefov, Akad. Nauk. SSSR Bull. Phys. Series 28, 1349 (1964).

1963 (1)

1960 (1)

R. B. Murray, J. J. Manning, IRE Trans. NS-7, 80 (1960).

Brown, R. M.

W. D. Gunter, R. M. Brown, NASA, private communication.

Burroughs, E. G.

Deutscher, K.

K. Deutscher, K. Hirschberg, Phys. Stat. Sol. 27, 147 (1968).

Erickson, E. F.

W. D. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[CrossRef]

G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
[CrossRef]

Grant, G. R.

W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
[CrossRef]

W. D. Gunter, R. J. Jennings, G. R. Grant, Appl. Opt. 7, 2143 (1968).
[CrossRef] [PubMed]

W. D. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[CrossRef]

G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
[CrossRef]

R. J. Jennings, W. D. Gunter, G. R. Grant, in preparation.

Gumnick, J. L.

J. L. Gumnick, C. D. Hollish, IEEE Trans. NS-13, 72 (1966).

Gunter, W. D.

W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
[CrossRef]

W. D. Gunter, R. J. Jennings, G. R. Grant, Appl. Opt. 7, 2143 (1968).
[CrossRef] [PubMed]

W. D. Gunter, D. N. Jaynes, Appl. Opt. 6, 350 (1967).
[CrossRef] [PubMed]

G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
[CrossRef]

W. D. Gunter, E. F. Erickson, G. R. Grant, Appl. Opt. 4, 512 (1965).
[CrossRef]

R. J. Jennings, W. D. Gunter, G. R. Grant, in preparation.

W. D. Gunter, R. M. Brown, NASA, private communication.

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 16.

Hirschberg, K.

K. Deutscher, K. Hirschberg, Phys. Stat. Sol. 27, 147 (1968).

Hirschfeld, T.

T. Hirschfeld, Appl. Opt. 7, 443 (1968).
[CrossRef] [PubMed]

T. Hirschfeld, Appl. Opt. 5, 1337 (1966).
[CrossRef] [PubMed]

T. Hirschfeld, E. R. Schildkraut, paper presented at 15th Annual Spectroscopy Symposium of Canada, Toronto, 22 October 1968.

Hollish, C. D.

J. L. Gumnick, C. D. Hollish, IEEE Trans. NS-13, 72 (1966).

Jaynes, D. N.

Jennings, R. J.

W. D. Gunter, R. J. Jennings, G. R. Grant, Appl. Opt. 7, 2143 (1968).
[CrossRef] [PubMed]

R. J. Jennings, W. D. Gunter, G. R. Grant, in preparation.

Kondrashov, V. E.

V. E. Kondrashov, A. S. Shefov, Akad. Nauk. SSSR Bull. Phys. Series 28, 1349 (1964).

Livingston, W. C.

Love, J. A.

Manning, J. J.

R. B. Murray, J. J. Manning, IRE Trans. NS-7, 80 (1960).

Murray, R. B.

R. B. Murray, J. J. Manning, IRE Trans. NS-7, 80 (1960).

Oke, J. B.

Rambo, B. E.

B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR 64-19April1964.

Schild, R. E.

Schildkraut, E. R.

T. Hirschfeld, E. R. Schildkraut, paper presented at 15th Annual Spectroscopy Symposium of Canada, Toronto, 22 October 1968.

Shaw, S. A.

W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
[CrossRef]

Shefov, A. S.

V. E. Kondrashov, A. S. Shefov, Akad. Nauk. SSSR Bull. Phys. Series 28, 1349 (1964).

Sizelove, J. R.

Wampler, E. J.

E. J. Wampler, Lick Observatory, University of California at Santa Cruz; private communication.

Wooten, F.

F. Wooten, J. Appl. Phys. 37, 2965 (1966).
[CrossRef]

Young, A. T.

Akad. Nauk. SSSR Bull. Phys. Series (1)

V. E. Kondrashov, A. S. Shefov, Akad. Nauk. SSSR Bull. Phys. Series 28, 1349 (1964).

Appl. Opt. (11)

IEEE Trans. (1)

J. L. Gumnick, C. D. Hollish, IEEE Trans. NS-13, 72 (1966).

IRE Trans. (1)

R. B. Murray, J. J. Manning, IRE Trans. NS-7, 80 (1960).

J. Appl. Phys. (1)

F. Wooten, J. Appl. Phys. 37, 2965 (1966).
[CrossRef]

Phys. Stat. Sol. (1)

K. Deutscher, K. Hirschberg, Phys. Stat. Sol. 27, 147 (1968).

Proc. IEEE (1)

W. D. Gunter, G. R. Grant, S. A. Shaw, Proc. IEEE 57, 1690 (1969).
[CrossRef]

Rev. Sci. Instrum. (1)

G. R. Grant, W. D. Gunter, E. F. Erickson, Rev. Sci. Instrum. 36, 1511 (1965).
[CrossRef]

Other (7)

E. J. Wampler, Lick Observatory, University of California at Santa Cruz; private communication.

B. E. Rambo, Air Force Tech. Doc. Rept. ALTDR 64-19April1964.

R. J. Jennings, W. D. Gunter, G. R. Grant, in preparation.

T. Hirschfeld, E. R. Schildkraut, paper presented at 15th Annual Spectroscopy Symposium of Canada, Toronto, 22 October 1968.

N. J. Harrick, Internal Reflection Spectroscopy (John Wiley & Sons, Inc., New York, 1967), p. 16.

W. D. Gunter, R. M. Brown, NASA, private communication.

W. A. Hiltner, Ed. Astronomical Techniques (University of Chicago Press, Chicago, 1962), p. 128.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Total internal reflection in the end window of a photo-multiplier.

Fig. 2
Fig. 2

Optically enhanced detection of small light pulses.

Fig. 3
Fig. 3

Normal and enhanced quantum efficiency of tube KRB-17.

Fig. 4
Fig. 4

Comparison of quantum efficiencies for tubes RRB-17 and HRB-18.

Fig. 5
Fig. 5

Illustration of factors affecting prism size and entrance aperture.

Fig. 6
Fig. 6

Improvement ratios provided by one, two, or many-bounces.

Fig. 7
Fig. 7

Enhancement devices with large acceptance areas.

Fig. 8
Fig. 8

Improvement ratio as a function of incident angle (left–right) and wavelength for a large area device.

Fig. 9
Fig. 9

Improvement ratio as a function of incident angle (up–down) and wavelength for a large area device.

Fig. 10
Fig. 10

Two devices for use with existing systems.

Fig. 11
Fig. 11

Quantum efficiency and improvement ratio of the mirror device of Fig. 10.

Fig. 12
Fig. 12

Quantum efficiency and improvement ratio of the two-prism device of Fig. 10.

Fig. 13
Fig. 13

Schematic representation of the principle of operation for the reimaging device.

Tables (1)

Tables Icon

Table I Entrance Aperture for Prism with n = 1.62 on Window with n = 1.5

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 1 sin θ 1 = n 2 sin θ 2 = = n j sin θ j = constant = k ,
S / N input S / N output = [ 1 δ n + 1 δ n ( 1 δ ) ] 1 2 = A .
S / N = I ϕ / [ 2 e ( i + I ϕ ) Δ f ] 1 2 ,
X ( R ) = R ( R + D ) 1 2 ( 1 + D ) 1 2 1 ,

Metrics