Abstract

A frequency response method for high speed spectrophotometry, which is characterized by simpler instrumentation and narrower frequency bandwidth than the stroboscopic method, is developed from frequency domain considerations of a transient process. Time-resolved emission spectra of Y2O2S:Tb and Y2O2S:Eu show that Tb3+ and Eu3+ undergo two and three different types of transient processes, respectively. These processes are assigned to transitions from 5Dj to 7F. Resolving power for time resolution is suggested as a new criterion for system evaluation and calculated for the frequency response and stroboscopic methods.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. Hendee, W. B. Brown, Philips Tech. Rev. 19, 50 (1957).
  2. G. E. Peterson, P. M. Bridenbaugh, J. Opt. Soc. Amer. 53, 1129 (1963).
    [CrossRef]
  3. Y. Kobayashi, T. Takamura, Japan J. Appl. Phys. 6, 114 (1967).
    [CrossRef]
  4. K. Doi, A. Toshinai, Japan. J. Appl. Phys. 7, 1504 (1968).
    [CrossRef]
  5. N. C. Chang, J. B. Gruber, J. Chem. Phys. 41, 3227 (1964).
    [CrossRef]
  6. G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 333.
  8. S. Goldman, Information Theory (Prentice-Hall, New York, 1953), p. 65.

1968 (1)

K. Doi, A. Toshinai, Japan. J. Appl. Phys. 7, 1504 (1968).
[CrossRef]

1967 (1)

Y. Kobayashi, T. Takamura, Japan J. Appl. Phys. 6, 114 (1967).
[CrossRef]

1964 (1)

N. C. Chang, J. B. Gruber, J. Chem. Phys. 41, 3227 (1964).
[CrossRef]

1963 (2)

G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[CrossRef]

G. E. Peterson, P. M. Bridenbaugh, J. Opt. Soc. Amer. 53, 1129 (1963).
[CrossRef]

1957 (1)

C. F. Hendee, W. B. Brown, Philips Tech. Rev. 19, 50 (1957).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 333.

Bridenbaugh, P. M.

G. E. Peterson, P. M. Bridenbaugh, J. Opt. Soc. Amer. 53, 1129 (1963).
[CrossRef]

Brown, W. B.

C. F. Hendee, W. B. Brown, Philips Tech. Rev. 19, 50 (1957).

Chang, N. C.

N. C. Chang, J. B. Gruber, J. Chem. Phys. 41, 3227 (1964).
[CrossRef]

Doi, K.

K. Doi, A. Toshinai, Japan. J. Appl. Phys. 7, 1504 (1968).
[CrossRef]

Goldman, S.

S. Goldman, Information Theory (Prentice-Hall, New York, 1953), p. 65.

Gruber, J. B.

N. C. Chang, J. B. Gruber, J. Chem. Phys. 41, 3227 (1964).
[CrossRef]

Hendee, C. F.

C. F. Hendee, W. B. Brown, Philips Tech. Rev. 19, 50 (1957).

Kobayashi, Y.

Y. Kobayashi, T. Takamura, Japan J. Appl. Phys. 6, 114 (1967).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[CrossRef]

Peterson, G. E.

G. E. Peterson, P. M. Bridenbaugh, J. Opt. Soc. Amer. 53, 1129 (1963).
[CrossRef]

Takamura, T.

Y. Kobayashi, T. Takamura, Japan J. Appl. Phys. 6, 114 (1967).
[CrossRef]

Toshinai, A.

K. Doi, A. Toshinai, Japan. J. Appl. Phys. 7, 1504 (1968).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 333.

J. Chem. Phys. (2)

N. C. Chang, J. B. Gruber, J. Chem. Phys. 41, 3227 (1964).
[CrossRef]

G. S. Ofelt, J. Chem. Phys. 38, 2171 (1963).
[CrossRef]

J. Opt. Soc. Amer. (1)

G. E. Peterson, P. M. Bridenbaugh, J. Opt. Soc. Amer. 53, 1129 (1963).
[CrossRef]

Japan J. Appl. Phys. (1)

Y. Kobayashi, T. Takamura, Japan J. Appl. Phys. 6, 114 (1967).
[CrossRef]

Japan. J. Appl. Phys. (1)

K. Doi, A. Toshinai, Japan. J. Appl. Phys. 7, 1504 (1968).
[CrossRef]

Philips Tech. Rev. (1)

C. F. Hendee, W. B. Brown, Philips Tech. Rev. 19, 50 (1957).

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 333.

S. Goldman, Information Theory (Prentice-Hall, New York, 1953), p. 65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement of frequency response method for cathodo-luminescence.

Fig. 2
Fig. 2

Illustration of time-resolved spectra from frequency response and stroboscopic methods corresponding to frequency characteristics and impulse responses, respectively.

Fig. 3
Fig. 3

Experimental arrangement of frequency response method for photo-luminescence.

Fig. 4
Fig. 4

Time-resolved emission spectra of mixed phosphors ZnS:Ag (blue) and Zn2SiO4:Mn (green).

Fig. 5
Fig. 5

Time-resolved emission spectra of Y2O2S:Eu at 70 Hz, 1 kzH and 5 kz.

Fig. 6
Fig. 6

Time resolved emission spectra of Y2O2S:Tb at 60 Hz and 1 kHz.

Fig. 7
Fig. 7

Assignments of time-resolved emission spectra to transitions in rare-earth ions.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ V S k V N .
V S 1 = g i S 1 exp ( - t / τ )
V N = g i N ,
Δ V S 1 = g i S 1 t Δ τ exp ( - t / τ ) τ 2
τ Δ τ 1 k i S 1 i N t τ exp ( - t / τ ) .
( τ Δ τ ) max = 1 e k i S 1 i N at t = τ ,
R P 1 = ( τ Δ τ ) max = ( t Δ t ) max 0.368 k i S 1 i N .
V S 2 = g i S 2 { 1 + ( 2 π τ f ) 2 } - 1 2 .
τ Δ τ 1 k i S 2 i N ( 2 π τ f ) 2 { 1 + ( 2 π τ f ) 2 } - 3 2 .
R P 2 = ( τ Δ τ ) max = ( f Δ f ) max 0.385 k i S 2 i N .

Metrics