Abstract

Some parameters related to the photographic recording of digital data by means of superposed diffraction gratings have been studied. The efficiencies of composite patterns formed by coherent multiple-beam interference depend strongly on the average exposure, beam balance ratios, spatial frequencies employed, and whether the exposures are made simultaneously or sequentially. Simultaneous exposures of N recording beams yield first-order outputs that are more intense by the factor N than the outputs of the same number of sequential exposures, other conditions being equal. The usable readout signal strength is limited primarily by the appearance of false images caused by nonlinear film transfer characteristics.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Altman, H. J. Zweig, Phot. Sci. Eng. 7, 173 (1963).
  2. C. S. McCamy, Appl. Opt. 4, 405 (1965).
    [CrossRef]
  3. R. L. Lamberts, G. C. Higgins, Phot. Soi. Eng. 10, 209 (1966).
  4. E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
    [CrossRef]
  5. L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).
  6. A. A. Tarnowski, C. H. Evans, J. Soc. Motion Picture Television Engrs. 71, 765 (1962).
  7. L. F. Shew, IEEE Conf. on Laser Engineering and Applications, Washington, D.C., 26–28 May 1969.
  8. R. H. Wolfe, F. C. Eisen, J. Opt. Soc. Amer. 40, 143 (1950).
    [CrossRef]
  9. H. Thirty, Phot. Sci. Eng. 4, 19 (1960).
  10. J. M. Burch, D. A. Palmer, Opt. Acta 8, 73 (1961).
    [CrossRef]
  11. A. K. Rigler, T. P. Vogl, Appl. Opt. 5, 1086 (1966).
    [CrossRef] [PubMed]
  12. N. George, J. W. Mathews, Appl. Phys. Lett. 9, 212 (1966).
    [CrossRef]
  13. K. V. Krishna Rao, Amer. J. Phys. 30, 106 (1962).
    [CrossRef]
  14. H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.
  15. P. J. VanHeerden, Appl. Opt. 2, 393 (1963).
    [CrossRef]
  16. J. T. LaMacchia, C. J. Vincelette, Appl. Opt. 7, 1857 (1968).
    [CrossRef] [PubMed]
  17. H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
    [CrossRef]
  18. D. G. Falconer, Phot. Sci. Eng. 10, 133 (1966).
  19. A. A. Friesem, A. Kozma, G. F. Adams, Appl. Opt. 6, 851 (1967).
    [CrossRef] [PubMed]
  20. R. L. Lamberts, Phot. Sci. Eng. 10, 213 (1966).
  21. F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Amer. 58, 970 (1968).
    [CrossRef]
  22. A. Kozma, J. Opt. Soc. Amer. 56, 428 (1966).
    [CrossRef]
  23. A. A. Friesem, J. S. Zelenka, Appl. Opt. 6, 1755 (1967).
    [CrossRef] [PubMed]

1968 (3)

H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
[CrossRef]

F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Amer. 58, 970 (1968).
[CrossRef]

J. T. LaMacchia, C. J. Vincelette, Appl. Opt. 7, 1857 (1968).
[CrossRef] [PubMed]

1967 (2)

1966 (7)

A. Kozma, J. Opt. Soc. Amer. 56, 428 (1966).
[CrossRef]

D. G. Falconer, Phot. Sci. Eng. 10, 133 (1966).

R. L. Lamberts, Phot. Sci. Eng. 10, 213 (1966).

R. L. Lamberts, G. C. Higgins, Phot. Soi. Eng. 10, 209 (1966).

L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

N. George, J. W. Mathews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

A. K. Rigler, T. P. Vogl, Appl. Opt. 5, 1086 (1966).
[CrossRef] [PubMed]

1965 (1)

1964 (1)

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

1963 (2)

J. H. Altman, H. J. Zweig, Phot. Sci. Eng. 7, 173 (1963).

P. J. VanHeerden, Appl. Opt. 2, 393 (1963).
[CrossRef]

1962 (2)

A. A. Tarnowski, C. H. Evans, J. Soc. Motion Picture Television Engrs. 71, 765 (1962).

K. V. Krishna Rao, Amer. J. Phys. 30, 106 (1962).
[CrossRef]

1961 (1)

J. M. Burch, D. A. Palmer, Opt. Acta 8, 73 (1961).
[CrossRef]

1960 (1)

H. Thirty, Phot. Sci. Eng. 4, 19 (1960).

1950 (1)

R. H. Wolfe, F. C. Eisen, J. Opt. Soc. Amer. 40, 143 (1950).
[CrossRef]

Adams, G. F.

Altman, J. H.

J. H. Altman, H. J. Zweig, Phot. Sci. Eng. 7, 173 (1963).

Baldwin, R.

L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Blackmer, L. L.

L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Burch, J. M.

J. M. Burch, D. A. Palmer, Opt. Acta 8, 73 (1961).
[CrossRef]

Caulfield, H. J.

H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
[CrossRef]

Eisen, F. C.

R. H. Wolfe, F. C. Eisen, J. Opt. Soc. Amer. 40, 143 (1950).
[CrossRef]

Evans, C. H.

A. A. Tarnowski, C. H. Evans, J. Soc. Motion Picture Television Engrs. 71, 765 (1962).

Falconer, D. G.

D. G. Falconer, Phot. Sci. Eng. 10, 133 (1966).

Fleisher, H.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Friesem, A. A.

George, N.

N. George, J. W. Mathews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

Harris, J. L.

H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
[CrossRef]

Higgins, G. C.

R. L. Lamberts, G. C. Higgins, Phot. Soi. Eng. 10, 209 (1966).

Kaspar, F. G.

F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Amer. 58, 970 (1968).
[CrossRef]

Kozma, A.

Krishna Rao, K. V.

K. V. Krishna Rao, Amer. J. Phys. 30, 106 (1962).
[CrossRef]

LaMacchia, J. T.

Lamberts, R. L.

F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Amer. 58, 970 (1968).
[CrossRef]

R. L. Lamberts, Phot. Sci. Eng. 10, 213 (1966).

R. L. Lamberts, G. C. Higgins, Phot. Soi. Eng. 10, 209 (1966).

Leith, E. N.

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

Lu, S.

H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
[CrossRef]

Mathews, J. W.

N. George, J. W. Mathews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

McCamy, C. S.

Palmer, D. A.

J. M. Burch, D. A. Palmer, Opt. Acta 8, 73 (1961).
[CrossRef]

Pengelly, P.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Reynolds, J.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Rigler, A. K.

Schools, R.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Shew, L. F.

L. F. Shew, IEEE Conf. on Laser Engineering and Applications, Washington, D.C., 26–28 May 1969.

Sincerbox, G.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Tarnowski, A. A.

A. A. Tarnowski, C. H. Evans, J. Soc. Motion Picture Television Engrs. 71, 765 (1962).

Thirty, H.

H. Thirty, Phot. Sci. Eng. 4, 19 (1960).

Upatnieks, J.

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

VanHeerden, P. J.

VanKerkhove, A. P.

L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

Vincelette, C. J.

Vogl, T. P.

Wolfe, R. H.

R. H. Wolfe, F. C. Eisen, J. Opt. Soc. Amer. 40, 143 (1950).
[CrossRef]

Zelenka, J. S.

Zweig, H. J.

J. H. Altman, H. J. Zweig, Phot. Sci. Eng. 7, 173 (1963).

Amer. J. Phys. (1)

K. V. Krishna Rao, Amer. J. Phys. 30, 106 (1962).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

N. George, J. W. Mathews, Appl. Phys. Lett. 9, 212 (1966).
[CrossRef]

J. Opt. Soc. Amer. (5)

H. J. Caulfield, S. Lu, J. L. Harris, J. Opt. Soc. Amer. 58, 1003 (1968).
[CrossRef]

F. G. Kaspar, R. L. Lamberts, J. Opt. Soc. Amer. 58, 970 (1968).
[CrossRef]

A. Kozma, J. Opt. Soc. Amer. 56, 428 (1966).
[CrossRef]

E. N. Leith, J. Upatnieks, J. Opt. Soc. Amer. 54, 1295 (1964).
[CrossRef]

R. H. Wolfe, F. C. Eisen, J. Opt. Soc. Amer. 40, 143 (1950).
[CrossRef]

J. Soc. Motion Picture Television Engrs. (1)

A. A. Tarnowski, C. H. Evans, J. Soc. Motion Picture Television Engrs. 71, 765 (1962).

Opt. Acta (1)

J. M. Burch, D. A. Palmer, Opt. Acta 8, 73 (1961).
[CrossRef]

Phot. Sci. Eng. (5)

H. Thirty, Phot. Sci. Eng. 4, 19 (1960).

L. L. Blackmer, A. P. VanKerkhove, R. Baldwin, Phot. Sci. Eng. 10, 263 (1966).

D. G. Falconer, Phot. Sci. Eng. 10, 133 (1966).

R. L. Lamberts, Phot. Sci. Eng. 10, 213 (1966).

J. H. Altman, H. J. Zweig, Phot. Sci. Eng. 7, 173 (1963).

Phot. Soi. Eng. (1)

R. L. Lamberts, G. C. Higgins, Phot. Soi. Eng. 10, 209 (1966).

Other (2)

L. F. Shew, IEEE Conf. on Laser Engineering and Applications, Washington, D.C., 26–28 May 1969.

H. Fleisher, P. Pengelly, J. Reynolds, R. Schools, G. Sincerbox, Optical and Electrooptical Information Processing (MIT Press, Cambridge, 1965), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Multiple-beam interference recording.

Fig. 2
Fig. 2

A practical recording system.

Fig. 3
Fig. 3

Photomicrograph of cross section of embossed film (25 lenticules mm−1).

Fig. 4
Fig. 4

Multiple reference beam configuration: (a) Section AA of Fig. 2; (b) Photograph of readout diffraction field.

Fig. 5
Fig. 5

Coplanar signal-reference beam recording: (a) photograph of diffraction field when interrogating beam satisfies the Bragg conditions; (b) photograph of diffraction field produced by irradiation at normal incidence.

Fig. 6
Fig. 6

Data modulation by fringe spoiling: (a) photomicrograph of single-frequency grating, 116 cycles/mm recorded on continuously moving film; (b) Oscillogram of read-out. The signals on the right represent a series of alternate binary ones and zeros. The trace on the left was produced by a continuous grating.

Fig. 7
Fig. 7

First-order diffraction intensity vs number of signal beams with beam balance ratio and average exposure held constant. The curve labeled m = 1 represents data for simultaneous exposures; the depending lines represent data for the indicated number m of sequential exposures, each containing p = N/m simultaneous signals.

Fig. 8
Fig. 8

First-order diffraction intensity vs spatial frequency for pan-sensitized Minicard film. The points Δ were obtained from the data of Fig. 11.

Fig. 9
Fig. 9

Typical transfer characteristics of pan-sensitized Minicard film. Ta, amplitude transmittance vs relative exposure. The other curves represent average first-order intensity vs relative exposure for the indicated values of k in a twenty-four grating composite.

Fig. 10
Fig. 10

Relative first-order intensity vs k for the indicated spatial frequencies. The factors in parentheses correspond to the drop in response with increasing frequencies.

Fig. 11
Fig. 11

Relative first-order intensity vs k for signal, false, and difference frequency images in a typical five-beam recording system.

Fig. 12
Fig. 12

Ratio of average signal- to false-image intensities vs k for a nominal five-beam system, and a nominal twenty-six beam system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos δ i cos δ i j = 1 2 [ cos ( δ i + δ i j ) + cos ( δ i - δ i j ) ] ,

Metrics