Abstract

A report of experiments on low voltage excitation of cw CO2 lasers is presented. Pertinent plasma considerations are given along with the design of various electrode configurations tested. Preliminary results suggest that low voltage excitation of cw CO2 lasers is practical using a grid structure and an inverted brush cathode assembly in a reduced height transverse geometry. The positive resistance VI characteristics so obtained permit an order of magnitude reduction in external ballast.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
    [CrossRef]
  2. J. E. Herceg, G. H. Miley, J. Appl. Phys. 39, 2147 (1968).
    [CrossRef]
  3. D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
    [CrossRef]
  4. R. J. Frieberg, P. O. Clark, IEEE Conference on Laser Engineering and Applications, J. Quantum Electron. 5, 362 (1969); R. J. Freiberg, P. O. Clark, J. Quantum Electron. 6, 105 (1970).
    [CrossRef]
  5. C. K. N. Patel, Phys. Rev. Lett. 13, 617 (1964).
    [CrossRef]
  6. P. O. Clark, M. R. Smith, Appl. Phys. Lett. 9, 367 (1966).
    [CrossRef]
  7. D. C. Tyte, R. W. Sage, Proceedings of IERE Conference on Lasers and Opto-Electronics, IERE Conf. Proc. No. 14, Southampton (1969).
  8. D. C. Tyte, Electron. Lett. 5, 447 (1969).
    [CrossRef]
  9. A. Von Engel, Ionized Gases (Oxford U. P., London, 1965), pp. 238–251.
  10. C. K. N. Patel, Appl. Phys. Lett. 7, 15 (1965); C. K. N. Patel, P. K. Tien, J. H. McFee, Appl. Phys. Lett. 7290 (1965).
    [CrossRef]
  11. Ref. 9, p. 253.
  12. G. Francis, Handbuch der Physik 22 (Springler, Berlin, 1956), p. 156.
  13. J. D. Cobine, Gaseous Conductors (Dover Publications, New York, 1958), pp. 228–231.
  14. T. J. Bridges, C. K. N. Patel, Appl. Phys. Lett. 7, 244 (1965).
    [CrossRef]
  15. W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
    [CrossRef]
  16. J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).
  17. H. M. Musal, J. Appl. Phys. 37, 1935 (1966).
    [CrossRef]
  18. Ref. 9, p. 237.
  19. P. K. Cheo, H. G. Cooper, J. Quantum Electron. 3, 79 (1967).
    [CrossRef]
  20. H. Kogelnik, T. J. Bridges, J. Quantum Electron. 3, 95 (1967).
    [CrossRef]
  21. T. J. Deutsch, J. Quantum Electron. 3, 151 (1967).
    [CrossRef]

1969

R. J. Frieberg, P. O. Clark, IEEE Conference on Laser Engineering and Applications, J. Quantum Electron. 5, 362 (1969); R. J. Freiberg, P. O. Clark, J. Quantum Electron. 6, 105 (1970).
[CrossRef]

D. C. Tyte, Electron. Lett. 5, 447 (1969).
[CrossRef]

W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
[CrossRef]

J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).

1968

J. E. Herceg, G. H. Miley, J. Appl. Phys. 39, 2147 (1968).
[CrossRef]

1967

P. K. Cheo, H. G. Cooper, J. Quantum Electron. 3, 79 (1967).
[CrossRef]

H. Kogelnik, T. J. Bridges, J. Quantum Electron. 3, 95 (1967).
[CrossRef]

T. J. Deutsch, J. Quantum Electron. 3, 151 (1967).
[CrossRef]

1966

H. M. Musal, J. Appl. Phys. 37, 1935 (1966).
[CrossRef]

P. O. Clark, M. R. Smith, Appl. Phys. Lett. 9, 367 (1966).
[CrossRef]

1965

C. K. N. Patel, Appl. Phys. Lett. 7, 15 (1965); C. K. N. Patel, P. K. Tien, J. H. McFee, Appl. Phys. Lett. 7290 (1965).
[CrossRef]

T. J. Bridges, C. K. N. Patel, Appl. Phys. Lett. 7, 244 (1965).
[CrossRef]

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

1964

C. K. N. Patel, Phys. Rev. Lett. 13, 617 (1964).
[CrossRef]

P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
[CrossRef]

Bridges, T. J.

H. Kogelnik, T. J. Bridges, J. Quantum Electron. 3, 95 (1967).
[CrossRef]

T. J. Bridges, C. K. N. Patel, Appl. Phys. Lett. 7, 244 (1965).
[CrossRef]

Cheo, P. K.

P. K. Cheo, H. G. Cooper, J. Quantum Electron. 3, 79 (1967).
[CrossRef]

Clark, P. O.

R. J. Frieberg, P. O. Clark, IEEE Conference on Laser Engineering and Applications, J. Quantum Electron. 5, 362 (1969); R. J. Freiberg, P. O. Clark, J. Quantum Electron. 6, 105 (1970).
[CrossRef]

P. O. Clark, M. R. Smith, Appl. Phys. Lett. 9, 367 (1966).
[CrossRef]

Cobine, J. D.

J. D. Cobine, Gaseous Conductors (Dover Publications, New York, 1958), pp. 228–231.

Cooper, H. G.

P. K. Cheo, H. G. Cooper, J. Quantum Electron. 3, 79 (1967).
[CrossRef]

Deutsch, T. J.

T. J. Deutsch, J. Quantum Electron. 3, 151 (1967).
[CrossRef]

Dugdale, R. A.

J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).

Ford, S. D.

J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).

Foster, J. D.

W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
[CrossRef]

Francis, G.

G. Francis, Handbuch der Physik 22 (Springler, Berlin, 1956), p. 156.

Frieberg, R. J.

R. J. Frieberg, P. O. Clark, IEEE Conference on Laser Engineering and Applications, J. Quantum Electron. 5, 362 (1969); R. J. Freiberg, P. O. Clark, J. Quantum Electron. 6, 105 (1970).
[CrossRef]

Herceg, J. E.

J. E. Herceg, G. H. Miley, J. Appl. Phys. 39, 2147 (1968).
[CrossRef]

Hodges, H. L.

P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. J. Bridges, J. Quantum Electron. 3, 95 (1967).
[CrossRef]

Leonard, D. A.

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

MacNair, D.

P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
[CrossRef]

Maskrey, J. T.

J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).

Miley, G. H.

J. E. Herceg, G. H. Miley, J. Appl. Phys. 39, 2147 (1968).
[CrossRef]

Musal, H. M.

H. M. Musal, J. Appl. Phys. 37, 1935 (1966).
[CrossRef]

Patel, C. K. N.

C. K. N. Patel, Appl. Phys. Lett. 7, 15 (1965); C. K. N. Patel, P. K. Tien, J. H. McFee, Appl. Phys. Lett. 7290 (1965).
[CrossRef]

T. J. Bridges, C. K. N. Patel, Appl. Phys. Lett. 7, 244 (1965).
[CrossRef]

C. K. N. Patel, Phys. Rev. Lett. 13, 617 (1964).
[CrossRef]

Sage, R. W.

D. C. Tyte, R. W. Sage, Proceedings of IERE Conference on Lasers and Opto-Electronics, IERE Conf. Proc. No. 14, Southampton (1969).

Smith, M. R.

P. O. Clark, M. R. Smith, Appl. Phys. Lett. 9, 367 (1966).
[CrossRef]

Targ, R.

W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
[CrossRef]

Tien, P. K.

P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
[CrossRef]

Tiffany, W. B.

W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
[CrossRef]

Tyte, D. C.

D. C. Tyte, Electron. Lett. 5, 447 (1969).
[CrossRef]

D. C. Tyte, R. W. Sage, Proceedings of IERE Conference on Lasers and Opto-Electronics, IERE Conf. Proc. No. 14, Southampton (1969).

Von Engel, A.

A. Von Engel, Ionized Gases (Oxford U. P., London, 1965), pp. 238–251.

Appl. Phys. Lett.

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

P. O. Clark, M. R. Smith, Appl. Phys. Lett. 9, 367 (1966).
[CrossRef]

C. K. N. Patel, Appl. Phys. Lett. 7, 15 (1965); C. K. N. Patel, P. K. Tien, J. H. McFee, Appl. Phys. Lett. 7290 (1965).
[CrossRef]

T. J. Bridges, C. K. N. Patel, Appl. Phys. Lett. 7, 244 (1965).
[CrossRef]

W. B. Tiffany, R. Targ, J. D. Foster, Appl. Phys. Lett. 15, 91 (1969).
[CrossRef]

Brit. J. Appl. Phys.

J. T. Maskrey, S. D. Ford, R. A. Dugdale, Brit. J. Appl. Phys. 2, 71 (1969).

Electron. Lett.

D. C. Tyte, Electron. Lett. 5, 447 (1969).
[CrossRef]

IEEE Conference on Laser Engineering and Applications

R. J. Frieberg, P. O. Clark, IEEE Conference on Laser Engineering and Applications, J. Quantum Electron. 5, 362 (1969); R. J. Freiberg, P. O. Clark, J. Quantum Electron. 6, 105 (1970).
[CrossRef]

J. Appl. Phys.

J. E. Herceg, G. H. Miley, J. Appl. Phys. 39, 2147 (1968).
[CrossRef]

H. M. Musal, J. Appl. Phys. 37, 1935 (1966).
[CrossRef]

J. Quantum Electron.

P. K. Cheo, H. G. Cooper, J. Quantum Electron. 3, 79 (1967).
[CrossRef]

H. Kogelnik, T. J. Bridges, J. Quantum Electron. 3, 95 (1967).
[CrossRef]

T. J. Deutsch, J. Quantum Electron. 3, 151 (1967).
[CrossRef]

Phys. Rev. Lett.

P. K. Tien, D. MacNair, H. L. Hodges, Phys. Rev. Lett. 12, 30 (1964).
[CrossRef]

C. K. N. Patel, Phys. Rev. Lett. 13, 617 (1964).
[CrossRef]

Other

A. Von Engel, Ionized Gases (Oxford U. P., London, 1965), pp. 238–251.

D. C. Tyte, R. W. Sage, Proceedings of IERE Conference on Lasers and Opto-Electronics, IERE Conf. Proc. No. 14, Southampton (1969).

Ref. 9, p. 237.

Ref. 9, p. 253.

G. Francis, Handbuch der Physik 22 (Springler, Berlin, 1956), p. 156.

J. D. Cobine, Gaseous Conductors (Dover Publications, New York, 1958), pp. 228–231.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of experimental lasers: (a) water-cooled anode, length 38 cm; (b) water-cooled cathodes, 2.54 cm diam; (c) aluminum grids, No. 14 mesh; (d) glass grid support ring, 3 cm diam; (e) cathode guard ring; (f) axial gas flow ports, laser No. 1; (g) plate glass laser cavity, 5 cm × 8 cm × 43 cm; (h) cathode–anode separation, 2.5 cm; (i) NaCl Brewster-angle windows; (j) transverse gas flow ports, laser No. 2.

Fig. 2
Fig. 2

Cross section of electrode geometries tested. (a) insulating grid support; (b) aluminum grid; (c) insulating guard ring; (d) flat electrode; (e) water-cooling assembly; (f) hollow cathode; (g) inverted brush cathode; (h) annular groove cathode.

Fig. 3
Fig. 3

Power output vs discharge current for lasers No. 1 and 2. Laser No. 1: Axial gas flow, pumping speed 8.1 liters sec−1; CO2(1.2 Torr), N2(1.3 Torr), He(8.4 Torr). Laser No. 2: A. Transverse gas flow, pumping speed 11 liters sec−1; CO2(1.6 Torr), N2(1.5 Torr), He(7.9 Torr). B. Transverse gas flow, pumping speed 8 liters sec−1.

Fig. 4
Fig. 4

Transverse gain profile for laser No. 1. Axial gas flow, 5 liters sec−1; CO2(1.2 Torr), N2(1.3 Torr), He(9.5 Torr); discharge current, 500 mA.

Fig. 5
Fig. 5

Laser gain vs discharge current for laser No. 1. Axial gas flow, 5 liters sec−1; CO2(1.2 Torr), N2(1.4 Torr), He(8.2 Torr).

Fig. 6
Fig. 6

VI characteristics for various cathode materials. Pumping speed, 5 liters sec−1; CO2(1.5 Torr), N2(1.5 Torr), He(8.0 Torr); flat cathode surfaces.

Fig. 7
Fig. 7

VI characteristic for copper cathode geometries. Pumping speed, 5 liters sec−1; CO2(1.5 Torr), N2(1.5 Torr), He(8.0 Torr).

Metrics