Abstract

A method for evaluating the thermal dimensional stability and homogeneity of beryllium mirrors is described. Thermal dimensional instabilities are shown to be highly dependent on crystalline anisotropy. An x-ray quality control technique is discussed which can be used to predict optical performance under changes in ambient temperature.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. S. Hodge, P. J. Gripshover, H. S. Hanes, Beryllium Technology (Gordon and Breach, New York, 1966), Vol. 2, p. 703.
  2. J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).
  3. J. T. Bloxsom, J. B. Schroeder, Appl. Opt. 9, 539 (1970).
    [CrossRef] [PubMed]
  4. R. S. Jones, L. Kadakia, Appl. Opt. 7, 1477 (1968).
    [CrossRef] [PubMed]
  5. C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
    [CrossRef]
  6. Index to the Powder Diffraction File (ASTM publication), Card No. 1–1291.

1970 (1)

1969 (2)

J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).

C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
[CrossRef]

1968 (1)

Barlow, M.

C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
[CrossRef]

Bloxsom, J. T.

Brown, H. M.

J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).

Goggin, W. R.

J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).

Gripshover, P. J.

E. S. Hodge, P. J. Gripshover, H. S. Hanes, Beryllium Technology (Gordon and Breach, New York, 1966), Vol. 2, p. 703.

Hanes, H. S.

E. S. Hodge, P. J. Gripshover, H. S. Hanes, Beryllium Technology (Gordon and Breach, New York, 1966), Vol. 2, p. 703.

Hodge, E. S.

E. S. Hodge, P. J. Gripshover, H. S. Hanes, Beryllium Technology (Gordon and Breach, New York, 1966), Vol. 2, p. 703.

Jones, R. S.

Kadakia, L.

Meredith, C. C.

C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
[CrossRef]

Moberly, J. W.

C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
[CrossRef]

J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).

Schroeder, J. B.

Appl. Opt. (2)

Intern. J. Powder Metallurgy (1)

J. W. Moberly, W. R. Goggin, H. M. Brown, Intern. J. Powder Metallurgy 5, 63 (1969).

J. Less Common Metals (1)

C. C. Meredith, J. W. Moberly, M. Barlow, J. Less Common Metals 18, 423 (1969).
[CrossRef]

Other (2)

Index to the Powder Diffraction File (ASTM publication), Card No. 1–1291.

E. S. Hodge, P. J. Gripshover, H. S. Hanes, Beryllium Technology (Gordon and Breach, New York, 1966), Vol. 2, p. 703.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Interferograms and surface contour maps of beryllium mirrors. All contours are peak to peak, A = 0 to 0.10λ, B 0.10λ to 0.20λ, C = 0.20λ to 0.30λ, D = 0.30λ to 0.40λ, E = 0.40λ to 0.50λ (λ = 632.8 nm).

Fig. 2
Fig. 2

X-ray diffractometer scans of hot-pressed beryllium. One surface examined was perpendicular to the hot-pressing direction, and the second was parallel to the hot-pressing direction.

Fig. 3
Fig. 3

X-ray diffractometer scans of a hot-pressed, S-200-D, beryllium mirror.

Fig. 4
Fig. 4

X-ray diffractometer scans of a hot isostatic pressed, P-40, beryllium mirror.

Fig. 5
Fig. 5

X-ray diffractometer scans of a pressureless sintered, FP-17 + 1% iron, beryllium mirror.

Tables (2)

Tables Icon

Table I Beryllium Samples Evaluated for Mirror Thermal Stability

Tables Icon

Table II Thermal Stability Test Data for Beryllium Mirrors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( 10 1 ¯ 1 ) - 100 % , ( 0002 ) - 28 % , ( 10 1 ¯ 0 ) - 31 % .

Metrics