Abstract

Theoretical and experimental results are reported on the thermal lensing effect caused by the radial thermal gradient present in optically pumped Nd: YAG laser rods. The presented theory is in agreement with the experimental observations. The results reveal that a Nd:YAG rod under pumped light becomes a positive lens with two focal lengths. The temperature dependent variation of the refractive index constitutes the major contribution of the thermal lensing. The stress dependent variation of the refractive index modifies the focal length about 20%. The effect of end-face curvature caused by an elongation of the rod is less than 6%.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (58)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription