Abstract

The conditions for magnetic hologram formation are reviewed and an analysis is given to explain some of the unique polarization effects seen on reconstruction, with both the Faraday and polar Kerr effect reconstructions treated. Experiments are presented which illustrate the features and storage potentials of magnetic holography.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Rajchman, Appl. Opt. 9, 2269 (1970).
    [CrossRef] [PubMed]
  2. R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
    [CrossRef]
  3. H. Carlsaw, J. Jaeger, Conduction of Heat in Solids (Oxford U. P., London, 1950), p. 34.
  4. D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
    [CrossRef]
  5. W. A. Michael, D. Treves, J. Appl. Phys. 40, 303 (1969).
    [CrossRef]
  6. B. A. Houston, Phil. Mag. 21, 1113 (1936).
  7. F. J. Kahn, ONR Contract.
  8. M. J. Frieser, IEEE Trans. Mag. MAG-4, 152 (1968).
    [CrossRef]
  9. A. Gray, G. Matthews, T. Macrobert, Bessel Functions (Macmillan, New York, 1952).
  10. J. Goldman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  11. R. L. Gamblin, 1968 wescon Tech. Papers, part 1, p. 16/3 (1968).
  12. A. Friesem, J. Zelenka, Appl. Opt. 6, 1755 (1967).
    [CrossRef] [PubMed]

1970 (1)

1969 (2)

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

W. A. Michael, D. Treves, J. Appl. Phys. 40, 303 (1969).
[CrossRef]

1968 (2)

D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
[CrossRef]

M. J. Frieser, IEEE Trans. Mag. MAG-4, 152 (1968).
[CrossRef]

1967 (1)

1936 (1)

B. A. Houston, Phil. Mag. 21, 1113 (1936).

Bernal, E.

D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
[CrossRef]

Carlsaw, H.

H. Carlsaw, J. Jaeger, Conduction of Heat in Solids (Oxford U. P., London, 1950), p. 34.

Chen, D.

D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
[CrossRef]

Friesem, A.

Frieser, M. J.

M. J. Frieser, IEEE Trans. Mag. MAG-4, 152 (1968).
[CrossRef]

Gamblin, R. L.

R. L. Gamblin, 1968 wescon Tech. Papers, part 1, p. 16/3 (1968).

Goldman, J.

J. Goldman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Gray, A.

A. Gray, G. Matthews, T. Macrobert, Bessel Functions (Macmillan, New York, 1952).

Houston, B. A.

B. A. Houston, Phil. Mag. 21, 1113 (1936).

Jaeger, J.

H. Carlsaw, J. Jaeger, Conduction of Heat in Solids (Oxford U. P., London, 1950), p. 34.

Kahn, F. J.

F. J. Kahn, ONR Contract.

Macrobert, T.

A. Gray, G. Matthews, T. Macrobert, Bessel Functions (Macmillan, New York, 1952).

Matthews, G.

A. Gray, G. Matthews, T. Macrobert, Bessel Functions (Macmillan, New York, 1952).

Mezrich, R. S.

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

Michael, W. A.

W. A. Michael, D. Treves, J. Appl. Phys. 40, 303 (1969).
[CrossRef]

Rajchman, J. A.

Ready, J. F.

D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
[CrossRef]

Treves, D.

W. A. Michael, D. Treves, J. Appl. Phys. 40, 303 (1969).
[CrossRef]

Zelenka, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. S. Mezrich, Appl. Phys. Lett. 14, 132 (1969).
[CrossRef]

IEEE Trans. Mag. (1)

M. J. Frieser, IEEE Trans. Mag. MAG-4, 152 (1968).
[CrossRef]

J. Appl. Phys. (2)

D. Chen, J. F. Ready, E. Bernal, J. Appl. Phys. 39, 3916 (1968).
[CrossRef]

W. A. Michael, D. Treves, J. Appl. Phys. 40, 303 (1969).
[CrossRef]

Phil. Mag. (1)

B. A. Houston, Phil. Mag. 21, 1113 (1936).

Other (5)

F. J. Kahn, ONR Contract.

A. Gray, G. Matthews, T. Macrobert, Bessel Functions (Macmillan, New York, 1952).

J. Goldman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

R. L. Gamblin, 1968 wescon Tech. Papers, part 1, p. 16/3 (1968).

H. Carlsaw, J. Jaeger, Conduction of Heat in Solids (Oxford U. P., London, 1950), p. 34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Magnetic grating. Grating spacing is 1.5 μ.

Fig. 2
Fig. 2

Complex magnetic hologram and reconstruction. The size of the hologram is ≈ 1 mm2.

Fig. 3
Fig. 3

(a) Faraday effect reconstruction, showing higher orders without an analyzer. (b) A first order image—Faraday reconstruction. Unpolarized light was used for reconstruction.

Fig. 4
Fig. 4

Holographic reconstruction—polarization effects.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I ( x , t ) = I 0 ( t ) [ 1 + cos ( 2 π x / d ) ] ,
2 V ( x , t ) x 2 1 α V ( x , t ) t = I ( x , t ) K h ,
V ( x , t ) = I 0 t c ρ h + I 0 d 2 4 π 2 K h ( 1 e 4 π 2 α t d 2 ) cos 2 π x d ,
V ( x , t ) = ( I 0 t / c ρ h ) [ 1 + cos ( 2 π x / d ) ] ,
V ( x , t ) = I 0 t c ρ h [ ( 1 + d 2 4 π 2 α t cos 2 π x d ) ] ,
Δ M = 0 E m ( E ) d E .
E r = r 0 ( a x + j μ a y ) ,
μ = 1 / ( 0 1 2 ) ( 1 0 ) .
E r = r 0 [ ( a x + j a y μ cos 2 π x d ) ] e j ω t
= r 0 a x e j ω t + j a y r 0 2 { u exp [ j ( w t 2 π x / d ) ] + u exp [ j ( w t + 2 π x / d ) ] } ,
E f f = r 0 2 4 { [ Re | 1 | ( 0 1 2 ) ( 1 0 ) ] 2 + [ I m | 1 | ( 0 ) 1 2 ( 1 0 ) ] 2 } .
E t = E 0 exp ( j 2 π / λ n 0 z ) ( a x cos δ 2 + a y sin δ 2 ) ,
δ = 2 π λ 0 z 1 ( 0 ) 1 2 = 2 π λ 0 z C M 0 ( 0 ) 1 2 cos 2 π x d .
cos ( φ cos k x ) = n = 0 ( 1 ) n J 2 n ( φ ) [ exp ( j 2 n k x ) + exp ( j 2 n k x ) ] , sin ( φ cos k x ) = n = 0 ( 1 ) n J 2 n + 1 ( φ ) × { exp [ j ( 2 n + 1 ) k x ] + exp [ j ( 2 n + 1 ) k x ] } ,
E t = E 0 exp ( j 2 π λ n 0 z ) × ( a x n = 0 ( 1 ) n J 2 n ( φ 1 ) [ exp ( j 4 n π x d ) + exp ( j 4 n π x d ) ] + a y n = 0 ( 1 ) n J 2 n + 1 ( φ 1 ) { exp [ j ( 2 n + 1 ) 2 π x d ] + exp [ j ( 2 n + 1 ) 2 π x d ] } ) ,
E f f = e α z { [ Re ( π z | 1 | ) λ ( 0 ) 1 2 ] 2 + [ Im π z | 1 | λ ( 0 ) 1 2 ] 2 } .
M ( x ) = M 0 n a n cos ( 2 π n x / d ) ,

Metrics