Abstract

An optical system is described for a read–write holographic memory capable of storage densities on the order of 8000 bits mm−2. Simplicity is achieved through the use of a normally incident reference beam for both writing and reading.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Rajchman, Appl. Opt. 9, 2269 (1970).
    [CrossRef] [PubMed]
  2. R. J. Collier, J. Opt. Soc. Amer. 58, 1548 (1968).
  3. J. A. Rajchman, J. Appl. Phys. 41, 1376 (1970).
    [CrossRef]
  4. See R. S. Mezrich, Appl. Opt. 9, 2275 (1970).
    [CrossRef] [PubMed]
  5. G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
    [CrossRef]
  6. W. F. Kosonocky, RCA Laboratories, Princeton, N. J., private communication.
  7. L. H. Lin, Appl. Opt. 8, 963 (1969).
    [CrossRef] [PubMed]
  8. C. B. Burckhardt, Appl. Opt. 9, 695 (1970).
    [CrossRef] [PubMed]
  9. A similar analysis appears in D. H. R. Vilkomerson, Ph.D. thesis, Columbia University, 1969.

1970 (4)

1969 (1)

1968 (2)

R. J. Collier, J. Opt. Soc. Amer. 58, 1548 (1968).

G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
[CrossRef]

Barton, L. A.

G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
[CrossRef]

Burckhardt, C. B.

Collier, R. J.

R. J. Collier, J. Opt. Soc. Amer. 58, 1548 (1968).

Heilmeier, G. H.

G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
[CrossRef]

Kosonocky, W. F.

W. F. Kosonocky, RCA Laboratories, Princeton, N. J., private communication.

Lin, L. H.

Mezrich, R. S.

Rajchman, J. A.

J. A. Rajchman, Appl. Opt. 9, 2269 (1970).
[CrossRef] [PubMed]

J. A. Rajchman, J. Appl. Phys. 41, 1376 (1970).
[CrossRef]

Vilkomerson, D. H. R.

A similar analysis appears in D. H. R. Vilkomerson, Ph.D. thesis, Columbia University, 1969.

Zanoni, L. A.

G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
[CrossRef]

Appl. Opt. (4)

J. Appl. Phys. (1)

J. A. Rajchman, J. Appl. Phys. 41, 1376 (1970).
[CrossRef]

J. Opt. Soc. Amer. (1)

R. J. Collier, J. Opt. Soc. Amer. 58, 1548 (1968).

Proc. IEEE (1)

G. H. Heilmeier, L. A. Zanoni, L. A. Barton, Proc. IEEE 56, 1162 (1968).
[CrossRef]

Other (2)

W. F. Kosonocky, RCA Laboratories, Princeton, N. J., private communication.

A similar analysis appears in D. H. R. Vilkomerson, Ph.D. thesis, Columbia University, 1969.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Side view of optical system illustrating the writing of a hologram at a selected location of the storage medium. The fact that the hololens, the latrix, and the storage medium consist of a square matrix array of elements does not show in this view. The corner mirror is shown slightly tilted from its true position to indicate its orientation more clearly. The faces of the plane mirror and the roof mirror, if extended, actually form the surfaces of a corner cube reflector.

Fig. 2
Fig. 2

Same as Fig. 1 with the light paths illustrating readout from a selected storage hologram.

Fig. 3
Fig. 3

Schematic cross section of two cells in the latrix. The upper light valve is unenergized and specularly reflects a fraction of the incident illumination. The lower cell is energized to diffuse the illumination through a large solid angle.

Fig. 4
Fig. 4

Diagram to illustrate the computation of storage density.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η = d / s ,
b = ( D / s ) 2 = ( η D / d ) 2 ,
h = 2 λ z / d ,
F = 2 1 2 D / z .
Storage density = b / h 2 = ( 1 8 ) ( η F / λ ) 2 .
Storage density ( Rayleigh limit ) = ( 1 2 ) ( F / λ ) 2 .

Metrics