Abstract

Photochromic materials have the property of changing color under light illumination. Inorganic photochromic materials are frequently cathodochromic as well, that is, they can be colored by electron beam irradiation. This paper describes recent studies at RCA Laboratories of three classes of inorganic photochromic materials: (1) rare-earth-doped CaF2; (2) transition-metal-doped SrTiO3 and CaTiO3; and (3) iron- or sulfur-doped sodalite. Photochromic properties of these materials in both single crystal and powder form, and cathodochromic properties of powders, are discussed.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Exelby, R. Grinter, Chem. Rev. 65, 247 (1965).
    [CrossRef]
  2. G. H. Brown, W. G. Shaw, Rev. Pure Appl. Chem. 11, 2 (1961).
  3. B. W. Faughnan, D. L. Staebler, Z. J. Kiss, in Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1971), Vol. 2, to be published.
  4. Z. J. Kiss, Phys. Today 23, 42 (1970).
    [CrossRef]
  5. D. L. Staebler, Z. J. Kiss, Appl. Phys. Lett. 14, 93 (1969).
    [CrossRef]
  6. B. W. Faughnan, Z. J. Kiss, Phys. Rev. Lett. 21, 1331 (1968).
    [CrossRef]
  7. B. W. Faughnan, Z. J. Kiss, IEEE J. Quantum Electron. QE5, 17 (1969).
    [CrossRef]
  8. A. F. Wells, Structural Inorganic Chemistry (Oxford U. P., London, 1950), pp. 590–591.
  9. D. B. Medved, Amer. Mineralogist 39, 615 (1954).
  10. W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
    [CrossRef]
  11. J. J. Amodei, Ph.D. thesis, University of Pennsylvania, Pa., 1968.
  12. D. L. Dexter, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic, New York, 1958), Vol. 6, p. 370.
    [CrossRef]
  13. N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
    [CrossRef]
  14. Z. J. Kiss, W. Phillips, Phys. Rev. 180, 924 (1969).
    [CrossRef]
  15. W. Phillips, Z. J. Kiss, Proc. IEEE 56, 2072 (1968).
    [CrossRef]
  16. H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950), pp. 156–159.
  17. I. Gorog, Appl. Opt. 9, 2243 (1970).
    [CrossRef] [PubMed]

1970 (2)

1969 (3)

Z. J. Kiss, W. Phillips, Phys. Rev. 180, 924 (1969).
[CrossRef]

D. L. Staebler, Z. J. Kiss, Appl. Phys. Lett. 14, 93 (1969).
[CrossRef]

B. W. Faughnan, Z. J. Kiss, IEEE J. Quantum Electron. QE5, 17 (1969).
[CrossRef]

1968 (2)

B. W. Faughnan, Z. J. Kiss, Phys. Rev. Lett. 21, 1331 (1968).
[CrossRef]

W. Phillips, Z. J. Kiss, Proc. IEEE 56, 2072 (1968).
[CrossRef]

1967 (1)

W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
[CrossRef]

1965 (1)

R. Exelby, R. Grinter, Chem. Rev. 65, 247 (1965).
[CrossRef]

1963 (1)

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

1961 (1)

G. H. Brown, W. G. Shaw, Rev. Pure Appl. Chem. 11, 2 (1961).

1954 (1)

D. B. Medved, Amer. Mineralogist 39, 615 (1954).

Amodei, J. J.

J. J. Amodei, Ph.D. thesis, University of Pennsylvania, Pa., 1968.

Brinen, J. S.

W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
[CrossRef]

Brown, G. H.

G. H. Brown, W. G. Shaw, Rev. Pure Appl. Chem. 11, 2 (1961).

Dexter, D. L.

D. L. Dexter, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic, New York, 1958), Vol. 6, p. 370.
[CrossRef]

Exelby, R.

R. Exelby, R. Grinter, Chem. Rev. 65, 247 (1965).
[CrossRef]

Faughnan, B. W.

B. W. Faughnan, Z. J. Kiss, IEEE J. Quantum Electron. QE5, 17 (1969).
[CrossRef]

B. W. Faughnan, Z. J. Kiss, Phys. Rev. Lett. 21, 1331 (1968).
[CrossRef]

B. W. Faughnan, D. L. Staebler, Z. J. Kiss, in Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1971), Vol. 2, to be published.

Gorog, I.

Grinter, R.

R. Exelby, R. Grinter, Chem. Rev. 65, 247 (1965).
[CrossRef]

Hodgson, W. G.

W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
[CrossRef]

Kiss, Z. J.

Z. J. Kiss, Phys. Today 23, 42 (1970).
[CrossRef]

B. W. Faughnan, Z. J. Kiss, IEEE J. Quantum Electron. QE5, 17 (1969).
[CrossRef]

D. L. Staebler, Z. J. Kiss, Appl. Phys. Lett. 14, 93 (1969).
[CrossRef]

Z. J. Kiss, W. Phillips, Phys. Rev. 180, 924 (1969).
[CrossRef]

W. Phillips, Z. J. Kiss, Proc. IEEE 56, 2072 (1968).
[CrossRef]

B. W. Faughnan, Z. J. Kiss, Phys. Rev. Lett. 21, 1331 (1968).
[CrossRef]

B. W. Faughnan, D. L. Staebler, Z. J. Kiss, in Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1971), Vol. 2, to be published.

Leverenz, H. W.

H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950), pp. 156–159.

Medved, D. B.

D. B. Medved, Amer. Mineralogist 39, 615 (1954).

Melamed, N. T.

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

Phillips, W.

Z. J. Kiss, W. Phillips, Phys. Rev. 180, 924 (1969).
[CrossRef]

W. Phillips, Z. J. Kiss, Proc. IEEE 56, 2072 (1968).
[CrossRef]

Shaw, W. G.

G. H. Brown, W. G. Shaw, Rev. Pure Appl. Chem. 11, 2 (1961).

Staebler, D. L.

D. L. Staebler, Z. J. Kiss, Appl. Phys. Lett. 14, 93 (1969).
[CrossRef]

B. W. Faughnan, D. L. Staebler, Z. J. Kiss, in Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1971), Vol. 2, to be published.

Wells, A. F.

A. F. Wells, Structural Inorganic Chemistry (Oxford U. P., London, 1950), pp. 590–591.

Williams, E. F.

W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
[CrossRef]

Amer. Mineralogist (1)

D. B. Medved, Amer. Mineralogist 39, 615 (1954).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. L. Staebler, Z. J. Kiss, Appl. Phys. Lett. 14, 93 (1969).
[CrossRef]

Chem. Rev. (1)

R. Exelby, R. Grinter, Chem. Rev. 65, 247 (1965).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. W. Faughnan, Z. J. Kiss, IEEE J. Quantum Electron. QE5, 17 (1969).
[CrossRef]

J. Appl. Phys. (1)

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[CrossRef]

J. Chem. Phys. (1)

W. G. Hodgson, J. S. Brinen, E. F. Williams. J. Chem. Phys. 47, 3719 (1967).
[CrossRef]

Phys. Rev. (1)

Z. J. Kiss, W. Phillips, Phys. Rev. 180, 924 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

B. W. Faughnan, Z. J. Kiss, Phys. Rev. Lett. 21, 1331 (1968).
[CrossRef]

Phys. Today (1)

Z. J. Kiss, Phys. Today 23, 42 (1970).
[CrossRef]

Proc. IEEE (1)

W. Phillips, Z. J. Kiss, Proc. IEEE 56, 2072 (1968).
[CrossRef]

Rev. Pure Appl. Chem. (1)

G. H. Brown, W. G. Shaw, Rev. Pure Appl. Chem. 11, 2 (1961).

Other (5)

B. W. Faughnan, D. L. Staebler, Z. J. Kiss, in Applied Solid State Science, R. Wolfe, Ed. (Academic, New York, 1971), Vol. 2, to be published.

J. J. Amodei, Ph.D. thesis, University of Pennsylvania, Pa., 1968.

D. L. Dexter, in Solid State Physics, F. Seitz, D. Turnbull, Eds. (Academic, New York, 1958), Vol. 6, p. 370.
[CrossRef]

H. W. Leverenz, An Introduction to the Luminescence of Solids (Wiley, New York, 1950), pp. 156–159.

A. F. Wells, Structural Inorganic Chemistry (Oxford U. P., London, 1950), pp. 590–591.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic band diagram of a photochromic material showing the photoexcitation and transfer of an electron from one localized impurity center, A, to another center, B.

Fig. 2
Fig. 2

(a) Optical absorption spectra of a CaF2:La crystal wafer before and after photochromic switching with uv light. (b) Optical absorption spectra of a CaTiO3:Ni, Mo crystal wafer before and after photochromic switching with uv light. (c) Diffuse reflectance spectra of Fe-doped sodalite before and after photochromic switching with uv light.

Fig. 3
Fig. 3

Photochromic optical absorption change as a function of transition metal dopant concentration for a SrTiO3:Ni single crystal and an Fe-doped sodalite powder.

Fig. 4
Fig. 4

Room temperature decay of photochromic absorption for several materials. For the dotted curve the time scale should be read in seconds.

Fig. 5
Fig. 5

(a) Optical diffuse reflectance spectra of a CaTiO3:Fe,Mo powder before and after photochromic switching with uv light. (b) Spectral dependence of the corresponding photochromic diffuse reflectance contrast ratio.

Fig. 6
Fig. 6

Photochromic sensitometric characteristic for CaTiO3:Fe,Mo powder for (a) uv write radiation, and (b) visible erase radiation.

Fig. 7
Fig. 7

Room temperature thermal decay of the photochromic diffuse reflectance contrast ratio for sodalite:I, sodalite:Br, and CaTiO3:Fe,Mo.

Fig. 8
Fig. 8

Diffuse reflectance contrast ratio as a function of electron beam exposure for an iodide sodalite and a CaTiO3:Fe,Mo screen.

Fig. 9
Fig. 9

Diffuse reflectance contrast ratios corresponding to the total coloration, reversible coloration, and irreversible coloration of a chloride sodalite test screen, as functions of the electron beam exposure.

Tables (1)

Tables Icon

Table I Saturated Diffuse Reflectance Contrast Ratios CaTiO3:Fe,Mo (Readout λ ≃ 5500 Å)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N f = 0.87 × 10 17 n ( n 2 + 2 ) 2 k max W 1 2 ,

Metrics