Abstract

A new technique has been devised for recording and reconstructing holograms which can be viewed from a wide range of angles simultaneously by a large number of people. The problems which arise through the use of this technique have been analyzed and the limitations delineated. Satisfactory wide angle, three-dimensional displays have been constructed in the manner described by using absorption holograms. The features of these holographic displays agree qualitatively with the predicted theoretical limitations.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Supertzi, A. R. Rigler, J. Opt. Soc. Amer. 56, 524 (1966).
    [CrossRef]
  2. T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
    [CrossRef]
  3. Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).
  4. K. A. Stetson, Appl. Phys. Lett. 11, 225 (1967)
    [CrossRef]
  5. K. A. Stetson, Appl. Phys. Lett. 12, 362 (1968).
    [CrossRef]
  6. L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Macmillan Company, New York, 1946), Chap. 12.
  8. L. Brillouin, La Diffraction de la Lumière par des Ultrasons (Hermann, Paris, 1933).
  9. E. David, Phys. Z. 38, 587 (1937).
  10. C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A 2, 406 (1935); Proc. Indian Acad. Sci. Sect. A 3, 75, 119 (1936).
  11. M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).
  12. H. W. Kogelnik, Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967) p. 605.

1968 (2)

Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).

K. A. Stetson, Appl. Phys. Lett. 12, 362 (1968).
[CrossRef]

1967 (1)

K. A. Stetson, Appl. Phys. Lett. 11, 225 (1967)
[CrossRef]

1966 (3)

E. P. Supertzi, A. R. Rigler, J. Opt. Soc. Amer. 56, 524 (1966).
[CrossRef]

T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
[CrossRef]

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

1965 (1)

M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).

1937 (1)

E. David, Phys. Z. 38, 587 (1937).

1935 (1)

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A 2, 406 (1935); Proc. Indian Acad. Sci. Sect. A 3, 75, 119 (1936).

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan Company, New York, 1946), Chap. 12.

Brillouin, L.

L. Brillouin, La Diffraction de la Lumière par des Ultrasons (Hermann, Paris, 1933).

Cohen, M. G.

M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).

David, E.

E. David, Phys. Z. 38, 587 (1937).

Gordon, E. I.

M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).

Jeong, T. H.

T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
[CrossRef]

Kakichashvili, Sh. D.

Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).

Kogelnik, H. W.

H. W. Kogelnik, Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967) p. 605.

Kovaleva, A. I.

Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).

Luckett, P.

T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
[CrossRef]

Nath, N. S. N.

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A 2, 406 (1935); Proc. Indian Acad. Sci. Sect. A 3, 75, 119 (1936).

Raman, C. V.

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A 2, 406 (1935); Proc. Indian Acad. Sci. Sect. A 3, 75, 119 (1936).

Rigler, A. R.

E. P. Supertzi, A. R. Rigler, J. Opt. Soc. Amer. 56, 524 (1966).
[CrossRef]

Rosen, L.

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

Rudolph, R.

T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
[CrossRef]

Rukhadze, V. A.

Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).

Stetson, K. A.

K. A. Stetson, Appl. Phys. Lett. 12, 362 (1968).
[CrossRef]

K. A. Stetson, Appl. Phys. Lett. 11, 225 (1967)
[CrossRef]

Supertzi, E. P.

E. P. Supertzi, A. R. Rigler, J. Opt. Soc. Amer. 56, 524 (1966).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan Company, New York, 1946), Chap. 12.

Appl. Phys. Lett. (3)

K. A. Stetson, Appl. Phys. Lett. 11, 225 (1967)
[CrossRef]

K. A. Stetson, Appl. Phys. Lett. 12, 362 (1968).
[CrossRef]

L. Rosen, Appl. Phys. Lett. 9, 337 (1966).
[CrossRef]

Bell System Tech. J. (1)

M. G. Cohen, E. I. Gordon, Bell System Tech. J. 44, 693 (1965).

J. Opt. Soc. Amer. (2)

E. P. Supertzi, A. R. Rigler, J. Opt. Soc. Amer. 56, 524 (1966).
[CrossRef]

T. H. Jeong, R. Rudolph, P. Luckett, J. Opt. Soc. Amer. 56, 1263 (1966).
[CrossRef]

Opt. Spectrosc. (1)

Sh. D. Kakichashvili, A. I. Kovaleva, V. A. Rukhadze, Opt. Spectrosc. 24, 333 (1968).

Phys. Z. (1)

E. David, Phys. Z. 38, 587 (1937).

Proc. Indian Acad. Sci. Sect. A (1)

C. V. Raman, N. S. N. Nath, Proc. Indian Acad. Sci. Sect. A 2, 406 (1935); Proc. Indian Acad. Sci. Sect. A 3, 75, 119 (1936).

Other (3)

M. Born, E. Wolf, Principles of Optics (Macmillan Company, New York, 1946), Chap. 12.

L. Brillouin, La Diffraction de la Lumière par des Ultrasons (Hermann, Paris, 1933).

H. W. Kogelnik, Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967) p. 605.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram illustrating how wide angle holograms are made.

Fig. 2
Fig. 2

Diagram showing how Bragg diffraction in thick holograms discriminates between the production of virtual and real images.

Fig. 3
Fig. 3

Diagram showing the effect of emulsion shrinkage on thick holograms.

Fig. 4
Fig. 4

Several photographs of a wide-angle holographic display. The photographs show clearly that the hologram can be viewed from widely different angles, that the real image does not interfere with the viewing, and that the grid structure caused by the recording technique is not objectionable.

Tables (1)

Tables Icon

Table I Viewing-Angle Characteristics of Holographic Emulsions

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

θ = λ / s .
s / d = θ .
s = ( λ d ) 1 2
I ± 1 sin 2 ( η ± 1 L / 2 ) ( η ± 1 L / 2 ) 2 ,
η ± 1 = ± ( 2 π / Λ cos θ ) ( sin θ 1 2 ( λ / Λ ) .
sin θ = 1 2 ( λ / Λ )
I 1 I + 1 = sin 2 ( 4 π A tan 2 θ / λ ) ( 4 π A tan 2 θ / λ ) .
4 π A tan 2 θ λ > π
Γ = ( π L / Λ cos θ ) ( sin θ sin θ ) = ( π L / Λ ) Δ θ .
Δ θ = sin θ cos θ ( Δ A / A )
Γ = ( 2 π A / λ ) ( Δ A / A ) sin 2 θ .
sin 2 θ < λ / 2 A Δ A / A
n = n 0 i Δ ( 1 + cos K x ) .
2 E x 2 + 2 E y 2 n 2 c 2 2 E t 2 = 0
E = V l ( y ) exp i [ ω t ( k s m θ l k ) x k cos θ y ] ,
( d V l / d y ) + i β l V l = ( ξ / 2 ) ( V l + 1 + V l 1 ) ,
ξ = ( Λ n 0 ) k cos θ η l = l k cos θ ( sin θ l K 2 k )
β l = η l i ξ .
V ± 2 V ± 1 V 0 .
( d V 0 / d y ) + i β 0 V 0 = 0.
V 0 = E 0 e ξ y 0 < y < L , V 0 = E 0 e ξ L y > L .
( d V ± 1 / d y ) + i β ± 1 V ± 1 = ( ξ / 2 ) V 0 .
V ± 1 ( y ) = e i β ± y y ξ 2 V 0 e i β ± 1 y d y , 0 < y < L .
V ± 1 ( L ) E 0 = ξ L 2 e ξ L [ sin ( η ± 1 L / L ) / ( η ± 1 L / 2 ) ] exp ( i η ± 1 L / 2 ) .

Metrics