Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mertz, Transformations in Optics (John Wiley & Sons, Inc., New York, 1965), p. 112.
  2. P. Hariharan, D. Sen, J. Opt. Soc. Amer. 51, 1307 (1961).
    [Crossref]
  3. M. V. R. K. Murty, J. Opt. Soc. Amer. 54, 1187 (1964); J. D. Armitage, A. W. Lohmann, Opt. Acta 12, 185 (1965).
    [Crossref]
  4. A. Kozma, J. Opt. Soc. Amer. 58, 722A (1968).
  5. A. Kozma, N. Massey, Appl. Opt. 8, 393 (1969).
    [Crossref] [PubMed]
  6. A. Macovski, Appl. Phys. Lett. 14, 166 (1969).
    [Crossref]

1969 (2)

1968 (1)

A. Kozma, J. Opt. Soc. Amer. 58, 722A (1968).

1964 (1)

M. V. R. K. Murty, J. Opt. Soc. Amer. 54, 1187 (1964); J. D. Armitage, A. W. Lohmann, Opt. Acta 12, 185 (1965).
[Crossref]

1961 (1)

P. Hariharan, D. Sen, J. Opt. Soc. Amer. 51, 1307 (1961).
[Crossref]

Hariharan, P.

P. Hariharan, D. Sen, J. Opt. Soc. Amer. 51, 1307 (1961).
[Crossref]

Kozma, A.

A. Kozma, N. Massey, Appl. Opt. 8, 393 (1969).
[Crossref] [PubMed]

A. Kozma, J. Opt. Soc. Amer. 58, 722A (1968).

Macovski, A.

A. Macovski, Appl. Phys. Lett. 14, 166 (1969).
[Crossref]

Massey, N.

Mertz, L.

L. Mertz, Transformations in Optics (John Wiley & Sons, Inc., New York, 1965), p. 112.

Murty, M. V. R. K.

M. V. R. K. Murty, J. Opt. Soc. Amer. 54, 1187 (1964); J. D. Armitage, A. W. Lohmann, Opt. Acta 12, 185 (1965).
[Crossref]

Sen, D.

P. Hariharan, D. Sen, J. Opt. Soc. Amer. 51, 1307 (1961).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Macovski, Appl. Phys. Lett. 14, 166 (1969).
[Crossref]

J. Opt. Soc. Amer. (3)

P. Hariharan, D. Sen, J. Opt. Soc. Amer. 51, 1307 (1961).
[Crossref]

M. V. R. K. Murty, J. Opt. Soc. Amer. 54, 1187 (1964); J. D. Armitage, A. W. Lohmann, Opt. Acta 12, 185 (1965).
[Crossref]

A. Kozma, J. Opt. Soc. Amer. 58, 722A (1968).

Other (1)

L. Mertz, Transformations in Optics (John Wiley & Sons, Inc., New York, 1965), p. 112.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Triangular path interferometer for recording spatially incoherent holograms using a radial shear. The object O is illuminated with a He–Ne laser in combination with a rotating ground glass. A Fourier transformation between the object plane O and the hologram plane H was performed by the lens L. With the telecentric lens system L1 and L2 a minification is obtained when traversing the triangular path in one direction and a magnification in the other.

Fig. 2
Fig. 2

Mach-Zehnder type interferometer for recording spatially incoherent holograms using a rotational shear. The object O is illuminated with a He–Ne laser in combination with a rotating ground glass. A Fourier transformation between the object plane O and the hologram plane H was performed by the lens L. A telecentric cylinder lens system L1 and L2 was used as image rotator (does not influence the state of polarization).

Fig. 3
Fig. 3

Reconstruction from a hologram taken in spatially incoherent light using a radial shear interferometer. Upper portion: relative positions of the two virtual objects created by the interferometer. Lower portion: corresponding reconstructions. (a)–(d) correspond to a focal length ratio 1.2, 1.8, 2.3, and 3.5. The magnifications obtained are 0.4, 1.3, 1.9, and 3.2.

Fig. 4
Fig. 4

Reconstruction from a hologram taken in spatially incoherent light using a rotational shear interferometer. Upper portion: relative positions of the two virtual objects created by the interferometer. Lower portion: corresponding reconstructions. (a)–(d) correspond to a rotation of 22.5°, 45°, 90°, and L80°. The magnifications obtained are 0.4, 0.8, 1.4, and 2.0.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u ( x ) exp ( i k x · ξ / f )
u ( x ) [ exp ( i k m x · ξ / f ) + exp ( i k x · ξ / f ) ] = 2 u ( x ) exp [ i k ( m + 1 ) x · ξ / 2 f ] cos [ k ( m 1 ) x · ξ / 2 f ] .
u ( x ) { exp [ i k ( x 0 + Δ ) · ξ / f ] + exp [ i k ( x 0 Δ ) · ξ / f ] } = 2 u ( x ) exp ( i k x 0 · ξ / f ) cos ( k Δ · ξ / f )
2 | u ( x ) | 2 [ 1 + cos ( 2 k Δ · ξ / f ) ] .
± 2 Δ = ± ( Δ / | Δ | ) 2 | x | | sin θ / 2 | ,

Metrics