Abstract

Several types of low energy, ultrafast flashlamps systems have been investigated as optical pumps for lasers using fast decaying fluorescent materials, in particular, organic dyes. Of the various systems examined, the coaxial lamp with a spark gap switch proved to be the most useful for pumping the organic dyes. Parameters optimized were gas type, gas pressure, discharge volume, and electrical circuitry. At optimum operation, the annular volume of the coaxial lamp is completely filled with the discharge and the current rise time is determined mainly by the external circuit inductance. The rapidity and uniformity of the discharge is attributed to photoionization of the gas fill. Current rise times are typically 140 nsec for energies up to 100 J. Because of the photoionization process, these coaxial lamps are considered to be a different class of flashlamps from the standard capillary discharge lamp, the sliding spark lamp, and the ablating wall lamp. Less useful systems that were investigated are described, and the reason for their deficiencies are analyzed.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 10, 162 (1966).
    [CrossRef]
  2. P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 11, 148 (1967).
    [CrossRef]
  3. B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
    [CrossRef]
  4. M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
    [CrossRef]
  5. M. J. Weber, M. Bass, IEEE J. Quantum Electron, QE-5175 (1969).
    [CrossRef]
  6. G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
    [CrossRef]
  7. P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
    [CrossRef]
  8. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
    [CrossRef]
  9. W. Schmidt, F. Schaefer, Z. Naturforsch. Aufgabe A 22a, 1563 (1967).
  10. P. Bogen, H. Conrads, in Proceedings of the VII International Conference on High Speed Photography, O. Helwich, Ed. (Darmstadt und Wien, Darmstadt, 1967), p. 68.
  11. R. G. Buser, D. Ramm, Appl. Opt. 5, 627 (1966).
    [CrossRef] [PubMed]
  12. E. T. Gerry, Appl. Phys. Lett. 7, 6 (1965).
    [CrossRef]
  13. D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
    [CrossRef]
  14. J. P. Shipman, Appl. Phys. Lett. 10, 1 (1967).
    [CrossRef]
  15. M. Geller, D. E. Altman, T. A. DeTemple, Appl. Opt. 7, 2232 (1968).
    [CrossRef] [PubMed]
  16. G. A. Theophanis, Rev. Sci. Instrum. 31, 427 (1960).
    [CrossRef]
  17. P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
    [CrossRef]
  18. J. P. Markiewicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
    [CrossRef]
  19. H. Raether, Electron Avalanches and Breakdown in Gases, (Butterworth Press, Washington, D. C., 1964), pp. 62–67.
  20. H. Raether, Ref. 19, Chapt. 5.
  21. F. Llewellyn-Jones, Ionization and Breakdown in Gases, (Methuen Company, London, 1957), Chapt. 5.
  22. L. Loeb, Fundamental Processes of Electrical Discharges in Gases (John Wiley & Sons, Inc., New York, 1939), pp. 426–432.
  23. E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
    [CrossRef]
  24. E. Fleger, H. Raether, Z. Phys. 99, 635 (1936);Z. Phys. 103, 315 (1936);
    [CrossRef]
  25. E. Nasser, J. Appl. Phys. 37, 4712 (1966).
    [CrossRef]
  26. R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 115 (1963).
    [CrossRef]
  27. J. S. Shirk, A. M. Bass, J. Chem. Phys. 49, 5156 (1968).
    [CrossRef]
  28. J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
    [CrossRef]

1969 (1)

M. J. Weber, M. Bass, IEEE J. Quantum Electron, QE-5175 (1969).
[CrossRef]

1968 (6)

G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
[CrossRef]

M. Geller, D. E. Altman, T. A. DeTemple, Appl. Opt. 7, 2232 (1968).
[CrossRef] [PubMed]

E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
[CrossRef]

M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

J. S. Shirk, A. M. Bass, J. Chem. Phys. 49, 5156 (1968).
[CrossRef]

1967 (6)

J. P. Shipman, Appl. Phys. Lett. 10, 1 (1967).
[CrossRef]

W. Schmidt, F. Schaefer, Z. Naturforsch. Aufgabe A 22a, 1563 (1967).

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 11, 148 (1967).
[CrossRef]

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

1966 (4)

J. P. Markiewicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 10, 162 (1966).
[CrossRef]

R. G. Buser, D. Ramm, Appl. Opt. 5, 627 (1966).
[CrossRef] [PubMed]

E. Nasser, J. Appl. Phys. 37, 4712 (1966).
[CrossRef]

1965 (2)

E. T. Gerry, Appl. Phys. Lett. 7, 6 (1965).
[CrossRef]

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

1964 (1)

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
[CrossRef]

1963 (1)

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 115 (1963).
[CrossRef]

1960 (1)

G. A. Theophanis, Rev. Sci. Instrum. 31, 427 (1960).
[CrossRef]

1936 (1)

E. Fleger, H. Raether, Z. Phys. 99, 635 (1936);Z. Phys. 103, 315 (1936);
[CrossRef]

Abou-Saeda, M.

E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
[CrossRef]

Altman, D. E.

Avizonis, P. V.

P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
[CrossRef]

Bass, A. M.

J. S. Shirk, A. M. Bass, J. Chem. Phys. 49, 5156 (1968).
[CrossRef]

Bass, M.

M. J. Weber, M. Bass, IEEE J. Quantum Electron, QE-5175 (1969).
[CrossRef]

M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
[CrossRef]

Billman, K. W.

G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
[CrossRef]

Bogen, P.

P. Bogen, H. Conrads, in Proceedings of the VII International Conference on High Speed Photography, O. Helwich, Ed. (Darmstadt und Wien, Darmstadt, 1967), p. 68.

Burnham, D. C.

G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
[CrossRef]

Buser, R. G.

Conrads, H.

P. Bogen, H. Conrads, in Proceedings of the VII International Conference on High Speed Photography, O. Helwich, Ed. (Darmstadt und Wien, Darmstadt, 1967), p. 68.

DeTemple, T. A.

Deutsch, T. F.

M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
[CrossRef]

Doss, T. T.

P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
[CrossRef]

Emmett, J. L.

J. P. Markiewicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
[CrossRef]

Fleger, E.

E. Fleger, H. Raether, Z. Phys. 99, 635 (1936);Z. Phys. 103, 315 (1936);
[CrossRef]

Geller, M.

Gerry, E. T.

E. T. Gerry, Appl. Phys. Lett. 7, 6 (1965).
[CrossRef]

Hammond, E. C.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

Heimlich, R.

P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
[CrossRef]

Heiszler, M.

E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
[CrossRef]

Jackson, J. K.

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 115 (1963).
[CrossRef]

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 11, 148 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 10, 162 (1966).
[CrossRef]

Leonard, D. A.

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

Llewellyn-Jones, F.

F. Llewellyn-Jones, Ionization and Breakdown in Gases, (Methuen Company, London, 1957), Chapt. 5.

Loeb, L.

L. Loeb, Fundamental Processes of Electrical Discharges in Gases (John Wiley & Sons, Inc., New York, 1939), pp. 426–432.

Markiewicz, J. P.

J. P. Markiewicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

McFarland, B. B.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Moruzzi, V. L.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

Nasser, E.

E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
[CrossRef]

E. Nasser, J. Appl. Phys. 37, 4712 (1966).
[CrossRef]

Raether, H.

E. Fleger, H. Raether, Z. Phys. 99, 635 (1936);Z. Phys. 103, 315 (1936);
[CrossRef]

H. Raether, Electron Avalanches and Breakdown in Gases, (Butterworth Press, Washington, D. C., 1964), pp. 62–67.

H. Raether, Ref. 19, Chapt. 5.

Ramm, D.

Schaefer, F.

W. Schmidt, F. Schaefer, Z. Naturforsch. Aufgabe A 22a, 1563 (1967).

Schappert, G. T.

G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
[CrossRef]

Schawlow, A. L.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
[CrossRef]

Schmidt, W.

W. Schmidt, F. Schaefer, Z. Naturforsch. Aufgabe A 22a, 1563 (1967).

Schneider, W. E.

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 115 (1963).
[CrossRef]

Shipman, J. P.

J. P. Shipman, Appl. Phys. Lett. 10, 1 (1967).
[CrossRef]

Shirk, J. S.

J. S. Shirk, A. M. Bass, J. Chem. Phys. 49, 5156 (1968).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 11, 148 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 10, 162 (1966).
[CrossRef]

Stair, R.

R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 115 (1963).
[CrossRef]

Theophanis, G. A.

G. A. Theophanis, Rev. Sci. Instrum. 31, 427 (1960).
[CrossRef]

Weber, M. J.

M. J. Weber, M. Bass, IEEE J. Quantum Electron, QE-5175 (1969).
[CrossRef]

M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
[CrossRef]

Weinberg, E. H.

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (6)

E. T. Gerry, Appl. Phys. Lett. 7, 6 (1965).
[CrossRef]

D. A. Leonard, Appl. Phys. Lett. 7, 4 (1965).
[CrossRef]

J. P. Shipman, Appl. Phys. Lett. 10, 1 (1967).
[CrossRef]

B. H. Soffer, B. B. McFarland, Appl. Phys. Lett. 10, 266 (1967).
[CrossRef]

M. Bass, T. F. Deutsch, M. J. Weber, Appl. Phys. Lett. 13, 120 (1968).
[CrossRef]

G. T. Schappert, K. W. Billman, D. C. Burnham, Appl. Phys. Lett. 13, 124 (1968).
[CrossRef]

IBM J. Res. Dev. (3)

P. P. Sorokin, J. R. Lankard, E. C. Hammond, V. L. Moruzzi, IBM J. Res. Dev. 11, 130 (1967).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 10, 162 (1966).
[CrossRef]

P. P. Sorokin, J. R. Lankard, IBM J. Res. Dev. 11, 148 (1967).
[CrossRef]

IEEE J. Quantum Electron (1)

M. J. Weber, M. Bass, IEEE J. Quantum Electron, QE-5175 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. P. Markiewicz, J. L. Emmett, IEEE J. Quantum Electron. QE-2, 707 (1966).
[CrossRef]

J. Appl. Phys. (3)

E. Nasser, J. Appl. Phys. 37, 4712 (1966).
[CrossRef]

J. L. Emmett, A. L. Schawlow, E. H. Weinberg, J. Appl. Phys. 35, 3601 (1964).
[CrossRef]

E. Nasser, M. Heiszler, M. Abou-Saeda, J. Appl. Phys. 39, 3707 (1968).
[CrossRef]

J. Chem. Phys. (2)

J. S. Shirk, A. M. Bass, J. Chem. Phys. 49, 5156 (1968).
[CrossRef]

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, E. C. Hammond, J. Chem. Phys. 48, 4726 (1968).
[CrossRef]

Rev. Sci. Instrum. (2)

G. A. Theophanis, Rev. Sci. Instrum. 31, 427 (1960).
[CrossRef]

P. V. Avizonis, T. T. Doss, R. Heimlich, Rev. Sci. Instrum. 38, 331 (1967).
[CrossRef]

Z. Naturforsch. Aufgabe A (1)

W. Schmidt, F. Schaefer, Z. Naturforsch. Aufgabe A 22a, 1563 (1967).

Z. Phys. (1)

E. Fleger, H. Raether, Z. Phys. 99, 635 (1936);Z. Phys. 103, 315 (1936);
[CrossRef]

Other (5)

P. Bogen, H. Conrads, in Proceedings of the VII International Conference on High Speed Photography, O. Helwich, Ed. (Darmstadt und Wien, Darmstadt, 1967), p. 68.

H. Raether, Electron Avalanches and Breakdown in Gases, (Butterworth Press, Washington, D. C., 1964), pp. 62–67.

H. Raether, Ref. 19, Chapt. 5.

F. Llewellyn-Jones, Ionization and Breakdown in Gases, (Methuen Company, London, 1957), Chapt. 5.

L. Loeb, Fundamental Processes of Electrical Discharges in Gases (John Wiley & Sons, Inc., New York, 1939), pp. 426–432.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Characteristics of a coaxial lamp–disk capacitor dye laser. (a) Upper trace. Side light from lamp showing smooth trace and toe characteristics of a Townsend discharge. (b) Lower trace. Nonreproducible laser output, time base 100 nsec large division.

Fig. 2
Fig. 2

Flashlamp output as a function of gas pressure.

Fig. 3
Fig. 3

Rise times to peak light output for different E/p, discharge lengths, and capacitance.

Fig. 4
Fig. 4

Light output from a thirty-point, short gap (6 mm) discharge in a cross pump configuration. Time base 100 nsec/large division.

Fig. 5
Fig. 5

Electric driver assembly.

Fig. 6
Fig. 6

Organic dye laser assembly.

Fig. 7
Fig. 7

Dye laser efficiency. Vertical bar indicates the effect of a change in gas fill pressure at a fixed pump input of 48 J for the 12-cm lamp. Efficiency at optimum for this lamp is 0.51%.

Fig. 8
Fig. 8

Superposition of six laser outputs. Time base 100 nsec/large division.

Fig. 9
Fig. 9

Kerr cell photographs of xenon-filled coaxial flashlamp (50 J discharge) (a) Setup, 10 nsec exposure at (b) 100 nsec; (c) 140 nsec (peak); (d) 220 nsec; (e) 420 nsec; (f) oscilloscope traces for shot (c) upper trace Kerr cell pulse, lower trace light output. Time base 100 nsec/large division.

Fig. 10
Fig. 10

Filamentary discharge through coaxial lamp. 50-J discharge, 10-nsec exposure at 100 nsecs. Oscilloscope trace of discharge shows symptoms of filamenting discharge. Time base 100 nsec/large division.

Fig. 11
Fig. 11

Laser output as a function of pressure and discharge annulus size at 50-J input for a 6-cm lamp.

Fig. 12
Fig. 12

Electric power, light output, and impedance of lamp during a 50-J discharge in a 6-cm lamp.

Fig. 13
Fig. 13

Spectra from a 50-J discharge. Top to bottom 2500 Å to 3500 Å, 3500 Å to 4500 Å, 4500 Å to 5500 Å, and 5500 Å to 6500 Å. Hg calibration superimposed.

Fig. 14
Fig. 14

Absolute and relative spectral brightness (Bλ) of the flashlamp in a 50-J discharge.

Tables (2)

Tables Icon

Table I Laser Performance for Coaxial Lamps with Disk Capacitors

Tables Icon

Table II Beam Divergence Measurements

Metrics