Abstract

The absorption by the oxygen A band near 13,100 cm−1 (7620 Å) has been investigated. Spectral curves with resolution between 0.6 cm−1 and 1.2 cm−1 have been obtained for several samples of O2 and O2 + N2 with path lengths from 8 m to 1185 m and pressures up to 13.6 atm. The strength of the entire band is 4.09 ± 0.25 g−1 cm2 cm−1, and the relationship between the band strength and the strengths of the individual lines has been determined. Half-widths of self-broadened lines at 1 atm pressure vary from approximately 0.074 cm−1 at J = 2 to 0.043 cm−1 for J = 25. The lines are approximately 5% wider for air at the same pressure since broadening by N2 is more efficient than self-broadening. The wings of the lines absorb less than Lorentz-shaped lines beyond approximately 10 cm−1 from the centers.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Van de Hulst, Ann. Astrophys. 8, 1, 12 (1945).
  2. H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
    [CrossRef]
  3. D. Q. Wark, D. M. Mercer, Appl. Opt. 4, 839 (1965).
    [CrossRef]
  4. G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, No. 10, 3596 (1961).
    [CrossRef]
  5. R. M. Chapman, Planetary Space Sci. 9, 70 (1962).
    [CrossRef]
  6. F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
    [CrossRef]
  7. D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
    [CrossRef]
  8. D. Q. Wark, ESSA, Washington, D.C., private communication.
  9. C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
    [CrossRef]
  10. H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Amer. 46, 1060 (1956).
    [CrossRef]
  11. D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
    [CrossRef]
  12. W. H. J. Childs, R. Mecke, Z. Physik 68, 344 (1931).
    [CrossRef]
  13. R. Schlapp, Phys. Rev. 39, 806 (1932).
    [CrossRef]
  14. R. Schlapp, Phys. Rev. 51, 342 (1937).
    [CrossRef]
  15. R. Ladenberg, F. Reiche, Ann. Physik 42, 181 (1913).
    [CrossRef]
  16. L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
    [CrossRef]
  17. G. N. Plass, J. Opt. Soc. Amer. 55, 104 (1965).
    [CrossRef]
  18. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
    [CrossRef]
  19. B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
    [CrossRef]

1969 (1)

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

1968 (1)

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
[CrossRef]

1967 (2)

F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
[CrossRef]

1965 (2)

G. N. Plass, J. Opt. Soc. Amer. 55, 104 (1965).
[CrossRef]

D. Q. Wark, D. M. Mercer, Appl. Opt. 4, 839 (1965).
[CrossRef]

1964 (1)

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
[CrossRef]

1963 (1)

C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
[CrossRef]

1962 (1)

R. M. Chapman, Planetary Space Sci. 9, 70 (1962).
[CrossRef]

1961 (1)

G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, No. 10, 3596 (1961).
[CrossRef]

1956 (2)

H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Amer. 46, 1060 (1956).
[CrossRef]

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

1948 (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

1945 (1)

H. C. Van de Hulst, Ann. Astrophys. 8, 1, 12 (1945).

1937 (1)

R. Schlapp, Phys. Rev. 51, 342 (1937).
[CrossRef]

1932 (1)

R. Schlapp, Phys. Rev. 39, 806 (1932).
[CrossRef]

1931 (1)

W. H. J. Childs, R. Mecke, Z. Physik 68, 344 (1931).
[CrossRef]

1913 (1)

R. Ladenberg, F. Reiche, Ann. Physik 42, 181 (1913).
[CrossRef]

Allin, E. J.

C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
[CrossRef]

Babcock, H. D.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Bartky, C. E.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

Bass, A. M.

H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Amer. 46, 1060 (1956).
[CrossRef]

Benedict, W. S.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
[CrossRef]

Burch, D. E.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
[CrossRef]

Chapman, R. M.

R. M. Chapman, Planetary Space Sci. 9, 70 (1962).
[CrossRef]

Childs, W. H. J.

W. H. J. Childs, R. Mecke, Z. Physik 68, 344 (1931).
[CrossRef]

Cho, C. W.

C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
[CrossRef]

Eggers, D. F.

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

Gryvnak, D. A.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
[CrossRef]

Herzberg, L.

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Jacobowitz, H.

F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
[CrossRef]

Kaplan, L. D.

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

Kostkowski, H. J.

H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Amer. 46, 1060 (1956).
[CrossRef]

Ladenberg, R.

R. Ladenberg, F. Reiche, Ann. Physik 42, 181 (1913).
[CrossRef]

Mecke, R.

W. H. J. Childs, R. Mecke, Z. Physik 68, 344 (1931).
[CrossRef]

Mercer, D. M.

Patty, R. R.

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
[CrossRef]

Plass, G. N.

G. N. Plass, J. Opt. Soc. Amer. 55, 104 (1965).
[CrossRef]

Reiche, F.

R. Ladenberg, F. Reiche, Ann. Physik 42, 181 (1913).
[CrossRef]

Saiedy, F.

F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
[CrossRef]

Schlapp, R.

R. Schlapp, Phys. Rev. 51, 342 (1937).
[CrossRef]

R. Schlapp, Phys. Rev. 39, 806 (1932).
[CrossRef]

Silverman, S.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
[CrossRef]

Van de Hulst, H. C.

H. C. Van de Hulst, Ann. Astrophys. 8, 1, 12 (1945).

Wark, D. Q.

F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
[CrossRef]

D. Q. Wark, D. M. Mercer, Appl. Opt. 4, 839 (1965).
[CrossRef]

G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, No. 10, 3596 (1961).
[CrossRef]

D. Q. Wark, ESSA, Washington, D.C., private communication.

Welsh, H. L.

C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
[CrossRef]

Winters, B. H.

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
[CrossRef]

Yamamoto, G.

G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, No. 10, 3596 (1961).
[CrossRef]

Ann. Astrophys. (1)

H. C. Van de Hulst, Ann. Astrophys. 8, 1, 12 (1945).

Ann. Physik (1)

R. Ladenberg, F. Reiche, Ann. Physik 42, 181 (1913).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (1)

H. D. Babcock, L. Herzberg, Astrophys. J. 108, 167 (1948).
[CrossRef]

Can. J. Phys. (1)

C. W. Cho, E. J. Allin, H. L. Welsh, Can. J. Phys. 41, 1991 (1963).
[CrossRef]

J. Atmos. Sci. (1)

F. Saiedy, H. Jacobowitz, D. Q. Wark, J. Atmos. Sci. 24, 63 (1967).
[CrossRef]

J. Chem. Phys. (1)

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

J. Geophys. Res. (1)

G. Yamamoto, D. Q. Wark, J. Geophys. Res. 66, No. 10, 3596 (1961).
[CrossRef]

J. Opt. Soc. Amer. (5)

H. J. Kostkowski, A. M. Bass, J. Opt. Soc. Amer. 46, 1060 (1956).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 58, 335 (1968).
[CrossRef]

G. N. Plass, J. Opt. Soc. Amer. 55, 104 (1965).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, J. Opt. Soc. Amer. 59, 267 (1969).
[CrossRef]

D. E. Burch, D. A. Gryvnak, R. R. Patty, J. Opt. Soc. Amer. 57, 885 (1967).
[CrossRef]

J. Quant. Spectrosc. Radiative Transfer (1)

B. H. Winters, S. Silverman, W. S. Benedict, J. Quant. Spectrosc. Radiative Transfer 4, 527 (1964).
[CrossRef]

Phys. Rev. (2)

R. Schlapp, Phys. Rev. 39, 806 (1932).
[CrossRef]

R. Schlapp, Phys. Rev. 51, 342 (1937).
[CrossRef]

Planetary Space Sci. (1)

R. M. Chapman, Planetary Space Sci. 9, 70 (1962).
[CrossRef]

Z. Physik (1)

W. H. J. Childs, R. Mecke, Z. Physik 68, 344 (1931).
[CrossRef]

Other (1)

D. Q. Wark, ESSA, Washington, D.C., private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Representative spectral curves of the oxygen A band. The spectral resolution is approximately 0.6 cm−1. Much of the line structure apparent in the curves was smoothed out when the samples were at higher pressures.

Fig. 2
Fig. 2

Comparison of observed line strengths with calculated strengths based on weighting functions given in Table III. Calculated strengths are based on Eq. (6) with Sv = 4.09 g−1 cm2 cm−1. The +'s denote the indicated ratio, calculated by using the Childs and Mecke weighting function for the sums of strengths of pairs of lines P2 + P3, P4 + P5, etc. These points are plotted midway between the two J″'s represented and are not subject to errors in determining the ratios of the strengths of the two lines forming a pair. The poor agreement between the observed strengths and those calculated on the basis of the original Schlapp13 function demonstrates the need to account for spin coupling.

Fig. 3
Fig. 3

Half-widths of self-broadened O2 lines at 1 atm pressure. The various symbols represent different samples from which the values were derived. Half-widths in air near 296 K are 1.05 P times the values from the curve, where P is the total air pressure in atmospheres.

Fig. 4
Fig. 4

Comparison of observed and calculated transmittances. The curves and symbols represent the observed and calculated transmittances, respectively. Sample 43 only is shown in the lower two panels; Sample 44 is nearly opaque in the spectral regions covered by these two panels.

Fig. 5
Fig. 5

Observed and calculated transmittances at two intervals where the absorption is due to extreme wings of lines. The 13,120–13,125 cm−1 region is near the band center, and the 13,165-13,178 cm−1 region is beyond the band head. The curves represent the observed transmittance. The O's and Δ's correspond to transmittances calculated on the basis of the Lorentz and modified Lorentz [Eq. (12)] line shapes, respectively. The sample parameters are as follows:

Samplep atmP(total) atmu g/cm2
442.002.00311
308.428.4236.8
238.4213.636.8

Tables (3)

Tables Icon

Table I Parameters for the 16O2 Lines

Tables Icon

Table II Types of Lines

Tables Icon

Table III Weighting Functions FJ

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S υ = K ( ν ) d ν .
K ( ν ) = ln T ( ν ) / u .
K ( ν ) = i k i ( ν ) .
S υ = 1 u ln T ( ν ) d ν .
S J = k ( ν ) d ν .
S J = [ S υ F J / Q ( θ ) ] exp ( h c E / κ θ ) .
Q ( θ ) = J F J exp ( h c E / κ θ ) .
A ( ν ) d ν = 2 π α L ( x ) ,
x = u S J / 2 π α ,
L ( x ) = x e x [ I 0 ( i x ) i I 1 ( i x ) ] .
A ( ν ) d ν = 2 ( α u S J ) 1 2 .
k ( ν ) = ( S / π ) { α χ / [ ( ν ν 0 ) 2 + α 2 ] } ,

Metrics