Abstract

The engineer is interested in the measurement of small deformations of large machine parts, for instance the deformation caused by force and temperature of large slideways in machine tools. For this purpose it was thought that hologram interferometry would be particularly suitable. However, no general method appeared to be available either for the making or for the evaluation of holograms recording large objects; therefore, the method described in this paper was worked out. It is based on the use of a special diagram which the author has named the holo-diagram. This can be used to make both ordinary holograms and Lippman holograms. We have found that it simplifies the evaluation of interference holograms for measuring dimension, deformation, and vibration. This work also inspired new ideas on the design of interferometers.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 55, 1694 (1965).
    [CrossRef]
  2. J. M. Burch, Production Eng. 44, 431 (1965).
    [CrossRef]
  3. R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
    [CrossRef]
  4. R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
    [CrossRef]
  5. K. S. Pennington, L. M. Lin, Appl. Phys. Lett. 7, 56 (1965).
    [CrossRef]
  6. E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).
  8. K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
    [CrossRef]
  9. F. T. Arecchi, A. Sana, in Quasi-Optics Symposium Proceedings, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964).

1967 (1)

E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
[CrossRef]

1966 (1)

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

1965 (5)

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 55, 1694 (1965).
[CrossRef]

J. M. Burch, Production Eng. 44, 431 (1965).
[CrossRef]

R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
[CrossRef]

R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
[CrossRef]

K. S. Pennington, L. M. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

Archbald, E.

E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
[CrossRef]

Arecchi, F. T.

F. T. Arecchi, A. Sana, in Quasi-Optics Symposium Proceedings, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Brooks, R. E.

R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
[CrossRef]

Burch, J. M.

E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
[CrossRef]

J. M. Burch, Production Eng. 44, 431 (1965).
[CrossRef]

Collier, R. J.

R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
[CrossRef]

Doherty, E. T.

R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
[CrossRef]

Ennos, A. E.

E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
[CrossRef]

Heflinger, L. O.

R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
[CrossRef]

Lin, L. M.

K. S. Pennington, L. M. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

Pennington, K. S.

K. S. Pennington, L. M. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
[CrossRef]

Powell, R. L.

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 55, 1694 (1965).
[CrossRef]

Sana, A.

F. T. Arecchi, A. Sana, in Quasi-Optics Symposium Proceedings, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964).

Stetson, K. A.

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 55, 1694 (1965).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Wuerken, R. F.

R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
[CrossRef]

Appl. Phys. Lett. (3)

R. J. Collier, E. T. Doherty, K. S. Pennington, Appl. Phys. Lett. 7, 223 (1965).
[CrossRef]

R. E. Brooks, L. O. Heflinger, R. F. Wuerken, Appl. Phys. Lett. 7, 248 (1965).
[CrossRef]

K. S. Pennington, L. M. Lin, Appl. Phys. Lett. 7, 56 (1965).
[CrossRef]

J. Opt. Soc. Amer. (2)

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 55, 1694 (1965).
[CrossRef]

K. A. Stetson, R. L. Powell, J. Opt. Soc. Amer. 56, 1161 (1966).
[CrossRef]

J. Sci. Instrum. (1)

E. Archbald, J. M. Burch, A. E. Ennos, J. Sci. Instrum. 44, 489 (1967).
[CrossRef]

Production Eng. (1)

J. M. Burch, Production Eng. 44, 431 (1965).
[CrossRef]

Other (2)

F. T. Arecchi, A. Sana, in Quasi-Optics Symposium Proceedings, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pressure vessel with a volume of 10 liters deformed by a pressure of 10−3 kp/cm2. The depth of the hologram is limited by the coherence length of the light.

Fig. 2
Fig. 2

The holo-diagram. A is the point from which the divergent laser beam originates; B is the center of the photographic plate.

Fig. 3
Fig. 3

Hologram of a slideway. Depth of hologram reaches from 0 m to 2.25 m.

Fig. 4
Fig. 4

A steel bar that is bent and twisted by a force acting on its middle. The bar is 1.95 m long.

Fig. 5
Fig. 5

Applications of the holo-diagram. L—laser; O—object; P—photographic plate; M—mirror; Bs—beam splitter (semi-reflecting mirror); C—camera, (a) No mirror for reference beam. Plate position P2 gives Lippman hologram. Plate position P2 gives ordinary hologram, (b) Position of bar in plate 4. (c) Ordinary hologram with mirror for reference beam, (d) Beam splitter and two mirrors. Rule III. C not true, (e) Usual interferometer, e.g., the Michelson type K = 1. (f) New type of interferometer K > 1.

Fig. 6
Fig. 6

Steel bar that has been given a minuate rotation around its long axis. The bar is 2 m long and the photo shows the far end.

Fig. 7
Fig. 7

Interferogram of a coin. Fringe separation is 4 μm. No hologram was used when the photo was made.

Metrics