Abstract

The depolarization of a linearly polarized laser beam was investigated primarily with an optical path of 4.5 km. A He–Ne gas laser at 6328 Å was used with an additional polarizer at the output and with a rotating polarization filter assembly in front of the receiver. Values of depolarization found ranged between 10−7 rad and about 5 × 10−5 rad. The lower limit was determined by the quality of the polarizer-analyzer combination used. These experimental values of depolarization are very much higher than that predicted by theories regarding turbulence-induced depolarization.

© 1969 Optical Society of America

Full Article  |  PDF Article

Corrections

, "Erratum," Appl. Opt. 8, 2081-2081 (1969)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-8-10-2081

References

  • View by:
  • |
  • |
  • |

  1. H. Hodara, Proc. IEEE 54, 368 (1966).
    [CrossRef]
  2. A. A. M. Saleh, H. Hodara, Proc. IEEE 55, 1209 (1967).
    [CrossRef]
  3. D. L. Fried, G. E. Mevers, J. Opt. Soc. Amer. 55, 740 (1965).
    [CrossRef]
  4. A. A. M. Saleh, IEEE J. Quantum Electron. QE-3, 540 (1967).
    [CrossRef]
  5. J. W. Strohbehm, S. F. Clifford, IEEE Trans. AP-15, 416 (1967).
    [CrossRef]
  6. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).
  7. D. L. Fried, J. B. Seidman, J. Opt. Soc. Amer. 58, 181 (1967).
  8. Proceedings of the Conference on Atmospheric Limitations to Optical Propagation, Central Radio Propagation Laboratory and National Center for Atmospheric Research, Boulder, Colorado, 1965.
  9. D. H. Höhn, Appl. Opt. 5, 1427, 1433 (1966).
    [CrossRef] [PubMed]
  10. D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
    [CrossRef]
  11. J. R. Meyer-Arendt, C. B. Emmanuel, “Optical Scintillation: A Survey of the Literature,” U.S. Dept. of Commerce, National Bureau of Standards, Tech. Note 225, April1965.
  12. D. A. deWolf, J. Opt. Soc. Amer. 58, 461 (1968).
    [CrossRef]
  13. J. I. Davis, Appl. Opt. 5, 139 (1966).
    [CrossRef] [PubMed]

1968 (1)

D. A. deWolf, J. Opt. Soc. Amer. 58, 461 (1968).
[CrossRef]

1967 (5)

A. A. M. Saleh, IEEE J. Quantum Electron. QE-3, 540 (1967).
[CrossRef]

J. W. Strohbehm, S. F. Clifford, IEEE Trans. AP-15, 416 (1967).
[CrossRef]

D. L. Fried, J. B. Seidman, J. Opt. Soc. Amer. 58, 181 (1967).

A. A. M. Saleh, H. Hodara, Proc. IEEE 55, 1209 (1967).
[CrossRef]

D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
[CrossRef]

1966 (3)

H. Hodara, Proc. IEEE 54, 368 (1966).
[CrossRef]

D. H. Höhn, Appl. Opt. 5, 1427, 1433 (1966).
[CrossRef] [PubMed]

J. I. Davis, Appl. Opt. 5, 139 (1966).
[CrossRef] [PubMed]

1965 (1)

D. L. Fried, G. E. Mevers, J. Opt. Soc. Amer. 55, 740 (1965).
[CrossRef]

Clifford, S. F.

J. W. Strohbehm, S. F. Clifford, IEEE Trans. AP-15, 416 (1967).
[CrossRef]

Davis, J. I.

deWolf, D. A.

D. A. deWolf, J. Opt. Soc. Amer. 58, 461 (1968).
[CrossRef]

Emmanuel, C. B.

J. R. Meyer-Arendt, C. B. Emmanuel, “Optical Scintillation: A Survey of the Literature,” U.S. Dept. of Commerce, National Bureau of Standards, Tech. Note 225, April1965.

Fried, D. L.

D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
[CrossRef]

D. L. Fried, J. B. Seidman, J. Opt. Soc. Amer. 58, 181 (1967).

D. L. Fried, G. E. Mevers, J. Opt. Soc. Amer. 55, 740 (1965).
[CrossRef]

Hodara, H.

A. A. M. Saleh, H. Hodara, Proc. IEEE 55, 1209 (1967).
[CrossRef]

H. Hodara, Proc. IEEE 54, 368 (1966).
[CrossRef]

Höhn, D. H.

D. H. Höhn, Appl. Opt. 5, 1427, 1433 (1966).
[CrossRef] [PubMed]

Keister, M. P.

D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
[CrossRef]

Mevers, G. E.

D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
[CrossRef]

D. L. Fried, G. E. Mevers, J. Opt. Soc. Amer. 55, 740 (1965).
[CrossRef]

Meyer-Arendt, J. R.

J. R. Meyer-Arendt, C. B. Emmanuel, “Optical Scintillation: A Survey of the Literature,” U.S. Dept. of Commerce, National Bureau of Standards, Tech. Note 225, April1965.

Saleh, A. A. M.

A. A. M. Saleh, IEEE J. Quantum Electron. QE-3, 540 (1967).
[CrossRef]

A. A. M. Saleh, H. Hodara, Proc. IEEE 55, 1209 (1967).
[CrossRef]

Seidman, J. B.

D. L. Fried, J. B. Seidman, J. Opt. Soc. Amer. 58, 181 (1967).

Strohbehm, J. W.

J. W. Strohbehm, S. F. Clifford, IEEE Trans. AP-15, 416 (1967).
[CrossRef]

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

A. A. M. Saleh, IEEE J. Quantum Electron. QE-3, 540 (1967).
[CrossRef]

IEEE Trans. (1)

J. W. Strohbehm, S. F. Clifford, IEEE Trans. AP-15, 416 (1967).
[CrossRef]

J. Opt. Soc. Amer. (4)

D. L. Fried, G. E. Mevers, M. P. Keister, J. Opt. Soc. Amer. 57, 787 (1967).
[CrossRef]

D. L. Fried, J. B. Seidman, J. Opt. Soc. Amer. 58, 181 (1967).

D. L. Fried, G. E. Mevers, J. Opt. Soc. Amer. 55, 740 (1965).
[CrossRef]

D. A. deWolf, J. Opt. Soc. Amer. 58, 461 (1968).
[CrossRef]

Proc. IEEE (2)

H. Hodara, Proc. IEEE 54, 368 (1966).
[CrossRef]

A. A. M. Saleh, H. Hodara, Proc. IEEE 55, 1209 (1967).
[CrossRef]

Other (3)

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill Book Company, Inc., New York, 1961).

Proceedings of the Conference on Atmospheric Limitations to Optical Propagation, Central Radio Propagation Laboratory and National Center for Atmospheric Research, Boulder, Colorado, 1965.

J. R. Meyer-Arendt, C. B. Emmanuel, “Optical Scintillation: A Survey of the Literature,” U.S. Dept. of Commerce, National Bureau of Standards, Tech. Note 225, April1965.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The root-mean-square variation of the angle of polarization σϕ as a function of the root-mean-square variation of the logarithm of intensity σlog I , and of the average structure constant C n ¯ along the propagation range of L = 4.5 km.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σ ϕ = 1 2 π ³ / ( Δ n 2 ) ½ l ³ / λ ( L ) ½
σ ϕ = ( 2 π ) 1 2 ( Δ n 2 ¯ / L c ) L ;
σ ϕ = [ ( Δ n 4 ¯ ) 1 2 4 ] ( L L c ) 1 2
( σ log A ) 2 = f ( Ω ) ( σ log A S ) 2 ,
Ω = k α 0 2 / L ,
( σ log I S ) 2 = 0.52 k / C n 2 L ¹¹ / .
σ log I ~ 2 × 10 7 [ m 1 2 ] C n ¯ .
I ¯ c I ¯ p ~ σ ϕ

Metrics