Abstract

A number of photomultiplier tubes have been assessed for application in experiments where the counting of individual photoelectrons from the photocathode is necessary or advantageous. Pulse height distributions, signal-to-noise-in-signal ratios, over-all quantum-counting efficiencies, time dependent statistical correlations, and dark current properties have been investigated and compared with theoretical expectations. A major finding has been the general low value of over-all quantum-counting efficiency. Direct measurements of this figure have not, to our knowledge, been published previously. A second conclusion has been that, although there seems to be no reason why high performance with respect to each of the features considered should not be achieved in a single tube, we have not yet found one in which this is so.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bertolaccini, S. Cova, Energ. Nucl. 10, 259 (1963).
  2. C. G. F. Delaney, P. W. Walton, Nucl. Instrum. Meth. 25, 353 (1964).
    [CrossRef]
  3. E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-11, 48 (1964).
    [CrossRef]
  4. R. Evrard, C. Gazier, J. Phys. Appl. 26, 37 (1965).
  5. G. A. Morton, Appl. Opt. 7, 1 (1968).
    [CrossRef] [PubMed]
  6. C. J. Oliver, E. R. Pike, J. Phys. D. 2, 1459 (1968).
    [CrossRef]
  7. J. A. Baicker, Inst. Radio Eng. Trans. Nucl. Sci. NS-7, 74 (1960).
    [CrossRef]
  8. N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).
  9. J. R. Prescott, Nucl. Instrum. Meth. 22, 256 (1963).
    [CrossRef]
  10. M. Rome, IEEE. Trans. Nucl. Sci. NS-11, 93 (1964).
    [CrossRef]
  11. J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
    [CrossRef]
  12. G. C. Baldwin, S. I. Friedman, Rev. Sci. Instrum. 36, 16 (1965).
    [CrossRef]
  13. M. Gadsden, Appl. Opt. 2, 1446 (1965).
    [CrossRef]
  14. W. H. Wright, J. Appl. Phys. 39, 3492 (1968).
    [CrossRef]
  15. J. R. Prescott, Nucl. Instrum. Meth. 39, 173 (1966).
    [CrossRef]
  16. IEEE Publ. No. 62, Inst. Radio Eng. 7.S1, Inst. Radio Eng. Standards on Electron Tubes, Phototubes, 78 (1962).
  17. G. A. Morton, RCA Rev. 10, 525 (1949).
  18. R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).
  19. E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-14, 7 (1967).
    [CrossRef]
  20. E. H. Eberhardt, Appl. Opt. 6, 359 (1967).
    [CrossRef] [PubMed]
  21. J. A. Lodge, EMI Ltd., private communication.
  22. F. A. Johnson, T. P. McLean, E. R. Pike, in Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGraw-Hill Book Company, Inc., New York, 1966), p. 706.
  23. E. R. Pike, Invited lecture to European Physical Society, Nuovo Cimento, to be published.
  24. G. A. Morton, J. A. Mitchell, RCA Rev. 9, 632 (1948).
  25. P. M. Woodward, Proc. Cambr. Phil. Soc. 44, 404 (1948).
    [CrossRef]
  26. L. Janossy, Zh. Eksperim. Teor. Fiz. 28, 679 (1955) [Sov. Phys.–JETP 1, 520 (1955)].
  27. F. J. Lombard, F. Martin, Rev. Sci. Instrum. 52, 200 (1961).
    [CrossRef]
  28. E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
    [CrossRef]
  29. E. Jakeman, E. R. Pike, J. Phys. A. 2, 115 (1969).
    [CrossRef]
  30. E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
    [CrossRef]
  31. F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
    [CrossRef]
  32. R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
    [CrossRef]
  33. J. P. Rodman, H. J. Smith, Appl. Opt. 2, 181 (1963).
    [CrossRef]
  34. H. G. Jackson, Nucl. Instrum. Meth. 33, 161 (1965).
    [CrossRef]
  35. P. R. Pearl, J. Sci. Instrum. 44, 797 (1967).
    [CrossRef]
  36. A. Lallemand, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.
  37. J. Sharpe, EMI Rep. R/P021 (1966).
  38. F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
    [CrossRef]
  39. F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
    [CrossRef]
  40. E. Jakeman, E. R. Pike, J. Phys. A. 2, 690 (1968).
    [CrossRef]
  41. W. A. Baum, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.
  42. E. H. Eberhardt, ITT Appl. Note E8 (1965).
  43. E. H. Eberhardt, ITT Appl. Note E5 (1964).

1969 (1)

E. Jakeman, E. R. Pike, J. Phys. A. 2, 115 (1969).
[CrossRef]

1968 (7)

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
[CrossRef]

R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
[CrossRef]

E. Jakeman, E. R. Pike, J. Phys. A. 2, 690 (1968).
[CrossRef]

G. A. Morton, Appl. Opt. 7, 1 (1968).
[CrossRef] [PubMed]

C. J. Oliver, E. R. Pike, J. Phys. D. 2, 1459 (1968).
[CrossRef]

W. H. Wright, J. Appl. Phys. 39, 3492 (1968).
[CrossRef]

1967 (5)

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-14, 7 (1967).
[CrossRef]

P. R. Pearl, J. Sci. Instrum. 44, 797 (1967).
[CrossRef]

F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

E. H. Eberhardt, Appl. Opt. 6, 359 (1967).
[CrossRef] [PubMed]

1966 (2)

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

J. R. Prescott, Nucl. Instrum. Meth. 39, 173 (1966).
[CrossRef]

1965 (5)

G. C. Baldwin, S. I. Friedman, Rev. Sci. Instrum. 36, 16 (1965).
[CrossRef]

M. Gadsden, Appl. Opt. 2, 1446 (1965).
[CrossRef]

R. Evrard, C. Gazier, J. Phys. Appl. 26, 37 (1965).

H. G. Jackson, Nucl. Instrum. Meth. 33, 161 (1965).
[CrossRef]

E. H. Eberhardt, ITT Appl. Note E8 (1965).

1964 (5)

E. H. Eberhardt, ITT Appl. Note E5 (1964).

C. G. F. Delaney, P. W. Walton, Nucl. Instrum. Meth. 25, 353 (1964).
[CrossRef]

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-11, 48 (1964).
[CrossRef]

M. Rome, IEEE. Trans. Nucl. Sci. NS-11, 93 (1964).
[CrossRef]

J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
[CrossRef]

1963 (3)

J. R. Prescott, Nucl. Instrum. Meth. 22, 256 (1963).
[CrossRef]

M. Bertolaccini, S. Cova, Energ. Nucl. 10, 259 (1963).

J. P. Rodman, H. J. Smith, Appl. Opt. 2, 181 (1963).
[CrossRef]

1962 (2)

N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).

IEEE Publ. No. 62, Inst. Radio Eng. 7.S1, Inst. Radio Eng. Standards on Electron Tubes, Phototubes, 78 (1962).

1961 (1)

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 52, 200 (1961).
[CrossRef]

1960 (1)

J. A. Baicker, Inst. Radio Eng. Trans. Nucl. Sci. NS-7, 74 (1960).
[CrossRef]

1955 (1)

L. Janossy, Zh. Eksperim. Teor. Fiz. 28, 679 (1955) [Sov. Phys.–JETP 1, 520 (1955)].

1952 (1)

R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).

1949 (1)

G. A. Morton, RCA Rev. 10, 525 (1949).

1948 (2)

G. A. Morton, J. A. Mitchell, RCA Rev. 9, 632 (1948).

P. M. Woodward, Proc. Cambr. Phil. Soc. 44, 404 (1948).
[CrossRef]

Arecchi, F. T.

F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
[CrossRef]

Baicker, J. A.

J. A. Baicker, Inst. Radio Eng. Trans. Nucl. Sci. NS-7, 74 (1960).
[CrossRef]

Baldwin, G. C.

G. C. Baldwin, S. I. Friedman, Rev. Sci. Instrum. 36, 16 (1965).
[CrossRef]

Barnaby, C. F.

J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
[CrossRef]

Barton, J. C.

J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
[CrossRef]

Baum, W. A.

W. A. Baum, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.

Bertolaccini, M.

M. Bertolaccini, S. Cova, Energ. Nucl. 10, 259 (1963).

Chang, R. F.

R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
[CrossRef]

Cova, S.

M. Bertolaccini, S. Cova, Energ. Nucl. 10, 259 (1963).

Delaney, C. G. F.

C. G. F. Delaney, P. W. Walton, Nucl. Instrum. Meth. 25, 353 (1964).
[CrossRef]

Detenbeck, R. W.

R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
[CrossRef]

Eberhardt, E. H.

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-14, 7 (1967).
[CrossRef]

E. H. Eberhardt, Appl. Opt. 6, 359 (1967).
[CrossRef] [PubMed]

E. H. Eberhardt, ITT Appl. Note E8 (1965).

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-11, 48 (1964).
[CrossRef]

E. H. Eberhardt, ITT Appl. Note E5 (1964).

Engstron, R. W.

R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).

Evrard, R.

R. Evrard, C. Gazier, J. Phys. Appl. 26, 37 (1965).

Friedman, S. I.

G. C. Baldwin, S. I. Friedman, Rev. Sci. Instrum. 36, 16 (1965).
[CrossRef]

Gadsden, M.

M. Gadsden, Appl. Opt. 2, 1446 (1965).
[CrossRef]

Gazier, C.

R. Evrard, C. Gazier, J. Phys. Appl. 26, 37 (1965).

Glover, A. M.

R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).

Jackson, H. G.

H. G. Jackson, Nucl. Instrum. Meth. 33, 161 (1965).
[CrossRef]

Jakeman, E.

E. Jakeman, E. R. Pike, J. Phys. A. 2, 115 (1969).
[CrossRef]

E. Jakeman, E. R. Pike, J. Phys. A. 2, 690 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
[CrossRef]

Janossy, L.

L. Janossy, Zh. Eksperim. Teor. Fiz. 28, 679 (1955) [Sov. Phys.–JETP 1, 520 (1955)].

Jasani, B. M.

J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
[CrossRef]

Johnson, F. A.

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

F. A. Johnson, T. P. McLean, E. R. Pike, in Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGraw-Hill Book Company, Inc., New York, 1966), p. 706.

Jones, R.

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

Khlebnikov, N. S.

N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).

Korenman, V.

R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
[CrossRef]

Kovaleva, T. A.

N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).

Lallemand, A.

A. Lallemand, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.

Lodge, J. A.

J. A. Lodge, EMI Ltd., private communication.

Lombard, F. J.

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 52, 200 (1961).
[CrossRef]

Martin, F.

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 52, 200 (1961).
[CrossRef]

McLean, T. P.

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

F. A. Johnson, T. P. McLean, E. R. Pike, in Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGraw-Hill Book Company, Inc., New York, 1966), p. 706.

Melamid, A. Ye.

N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).

Mitchell, J. A.

G. A. Morton, J. A. Mitchell, RCA Rev. 9, 632 (1948).

Morton, G. A.

G. A. Morton, Appl. Opt. 7, 1 (1968).
[CrossRef] [PubMed]

G. A. Morton, RCA Rev. 10, 525 (1949).

G. A. Morton, J. A. Mitchell, RCA Rev. 9, 632 (1948).

Oliver, C. J.

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
[CrossRef]

C. J. Oliver, E. R. Pike, J. Phys. D. 2, 1459 (1968).
[CrossRef]

Pearl, P. R.

P. R. Pearl, J. Sci. Instrum. 44, 797 (1967).
[CrossRef]

Pike, E. R.

E. Jakeman, E. R. Pike, J. Phys. A. 2, 115 (1969).
[CrossRef]

C. J. Oliver, E. R. Pike, J. Phys. D. 2, 1459 (1968).
[CrossRef]

E. Jakeman, E. R. Pike, J. Phys. A. 2, 690 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

E. R. Pike, Invited lecture to European Physical Society, Nuovo Cimento, to be published.

F. A. Johnson, T. P. McLean, E. R. Pike, in Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGraw-Hill Book Company, Inc., New York, 1966), p. 706.

Prescott, J. R.

J. R. Prescott, Nucl. Instrum. Meth. 39, 173 (1966).
[CrossRef]

J. R. Prescott, Nucl. Instrum. Meth. 22, 256 (1963).
[CrossRef]

Rodari, G. S.

F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
[CrossRef]

Rodman, J. P.

Rome, M.

M. Rome, IEEE. Trans. Nucl. Sci. NS-11, 93 (1964).
[CrossRef]

Sharpe, J.

J. Sharpe, EMI Rep. R/P021 (1966).

Smith, H. J.

Sona, A.

F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
[CrossRef]

Stoudenheimer, R. G.

R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).

Walton, P. W.

C. G. F. Delaney, P. W. Walton, Nucl. Instrum. Meth. 25, 353 (1964).
[CrossRef]

Woodward, P. M.

P. M. Woodward, Proc. Cambr. Phil. Soc. 44, 404 (1948).
[CrossRef]

Wright, W. H.

W. H. Wright, J. Appl. Phys. 39, 3492 (1968).
[CrossRef]

Appl. Opt. (4)

Energ. Nucl. (1)

M. Bertolaccini, S. Cova, Energ. Nucl. 10, 259 (1963).

IEEE Publ. No. 62, Inst. Radio Eng. 7.S1, Inst. Radio Eng. Standards on Electron Tubes, Phototubes (1)

IEEE Publ. No. 62, Inst. Radio Eng. 7.S1, Inst. Radio Eng. Standards on Electron Tubes, Phototubes, 78 (1962).

IEEE. Trans. Nucl. Sci. (3)

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-14, 7 (1967).
[CrossRef]

M. Rome, IEEE. Trans. Nucl. Sci. NS-11, 93 (1964).
[CrossRef]

E. H. Eberhardt, IEEE. Trans. Nucl. Sci. NS-11, 48 (1964).
[CrossRef]

Inst. Radio Eng. Trans. Nucl. Sci. (1)

J. A. Baicker, Inst. Radio Eng. Trans. Nucl. Sci. NS-7, 74 (1960).
[CrossRef]

ITT Appl. Note (2)

E. H. Eberhardt, ITT Appl. Note E8 (1965).

E. H. Eberhardt, ITT Appl. Note E5 (1964).

J. Appl. Phys. (1)

W. H. Wright, J. Appl. Phys. 39, 3492 (1968).
[CrossRef]

J. Phys. A. (4)

E. Jakeman, E. R. Pike, J. Phys. A. 2, 690 (1968).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 497 (1968).
[CrossRef]

E. Jakeman, E. R. Pike, J. Phys. A. 2, 115 (1969).
[CrossRef]

E. Jakeman, C. J. Oliver, E. R. Pike, J. Phys. A. 2, 406 (1968).
[CrossRef]

J. Phys. Appl. (1)

R. Evrard, C. Gazier, J. Phys. Appl. 26, 37 (1965).

J. Phys. D. (1)

C. J. Oliver, E. R. Pike, J. Phys. D. 2, 1459 (1968).
[CrossRef]

J. Sci. Instrum. (2)

J. C. Barton, C. F. Barnaby, B. M. Jasani, J. Sci. Instrum. 41, 599 (1964).
[CrossRef]

P. R. Pearl, J. Sci. Instrum. 44, 797 (1967).
[CrossRef]

Nucl. Instrum. Meth. (4)

H. G. Jackson, Nucl. Instrum. Meth. 33, 161 (1965).
[CrossRef]

J. R. Prescott, Nucl. Instrum. Meth. 39, 173 (1966).
[CrossRef]

J. R. Prescott, Nucl. Instrum. Meth. 22, 256 (1963).
[CrossRef]

C. G. F. Delaney, P. W. Walton, Nucl. Instrum. Meth. 25, 353 (1964).
[CrossRef]

Nucleonics (1)

R. W. Engstron, R. G. Stoudenheimer, A. M. Glover, Nucleonics 10, 58 (1952).

Opt. Act. (1)

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Opt. Act. 14, 35 (1967).
[CrossRef]

Phys. Lett. (2)

F. T. Arecchi, G. S. Rodari, A. Sona, Phys. Lett. 25, 59 (1967).
[CrossRef]

R. F. Chang, V. Korenman, R. W. Detenbeck, Phys. Lett. 26, 417 (1968).
[CrossRef]

Phys. Rev. Lett. (1)

F. A. Johnson, R. Jones, T. P. McLean, E. R. Pike, Phys. Rev. Lett. 16, 589 (1966).
[CrossRef]

Proc. Cambr. Phil. Soc. (1)

P. M. Woodward, Proc. Cambr. Phil. Soc. 44, 404 (1948).
[CrossRef]

Radio Eng. Electron. Phys. (1)

N. S. Khlebnikov, A. Ye. Melamid, T. A. Kovaleva, Radio Eng. Electron. Phys. 7, 488 (1962).

RCA Rev. (2)

G. A. Morton, J. A. Mitchell, RCA Rev. 9, 632 (1948).

G. A. Morton, RCA Rev. 10, 525 (1949).

Rev. Sci. Instrum. (2)

G. C. Baldwin, S. I. Friedman, Rev. Sci. Instrum. 36, 16 (1965).
[CrossRef]

F. J. Lombard, F. Martin, Rev. Sci. Instrum. 52, 200 (1961).
[CrossRef]

Zh. Eksperim. Teor. Fiz. (1)

L. Janossy, Zh. Eksperim. Teor. Fiz. 28, 679 (1955) [Sov. Phys.–JETP 1, 520 (1955)].

Other (6)

A. Lallemand, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.

J. Sharpe, EMI Rep. R/P021 (1966).

W. A. Baum, in Astronomical Techniques, W. Hiltner, Ed. (University of Chicago Press, Chicago, 1962), Vol. II, Chap. 6.

J. A. Lodge, EMI Ltd., private communication.

F. A. Johnson, T. P. McLean, E. R. Pike, in Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico, P. L. Kelley, B. Lax, P. E. Tannenwald, Eds. (McGraw-Hill Book Company, Inc., New York, 1966), p. 706.

E. R. Pike, Invited lecture to European Physical Society, Nuovo Cimento, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A pulse height distribution (SER) for an EMI 9558B photomultiplier tube obtained using an amplifier and a multichannel pulse height analyzer.

Fig. 2
Fig. 2

Distribution and density functions for an ITT FW 130 photomultiplier tube obtained by varying the tube voltage and measuring the count rate above a fixed threshold. Both light and dark count rate distributions and the theoretical predictions, assuming Poisson multiplication statistics, are shown.

Fig. 3
Fig. 3

As in Fig. 2 for a second ITT FW 130 photomultiplier tube.

Fig. 4
Fig. 4

Distribution and density functions for an EMI 9558B, a 9658A, and a D22498.

Fig. 5
Fig. 5

Distribution and density functions for a Mullard 56 TVP illustrating the effect of the construction of the resistor chain. The theoretical prediction, assuming Poisson multiplication statistics, is also shown. Point A corresponds to good photon-counting statistics, point B corresponds to slight correlations, and point C to marked correlations caused by poor base construction.

Fig. 6
Fig. 6

A comparison of the conventional measurement of collection efficiency, using the signal-to-variance-in-signal ratio of the multiplier output, with that obtained using a standardized multiplier output. The results are compared with the ideal (F = 1) ratio.

Fig. 7
Fig. 7

Variation of the photon-counting correlations with discriminator dead time for the EMI 9658A and D22498, the ITT FW 130, and the Mullard 56 TVP.

Fig. 8
Fig. 8

Variation of the photon-counting correlations with quantum-counting efficiency, obtained by varying the tube voltage, for the EMI 9658A and D22498, the ITT FW 130, and the Mullard 56 TVP.

Fig. 9
Fig. 9

Anticorrelations in the photon-counting statistics as a function of count rate and quantum efficiency (tube voltage).

Fig. 10
Fig. 10

Cooling curve for the 56 TVP to illustrate the initial cooling following Richardson’s law tending to an asymptotic lower limit.

Tables (6)

Tables Icon

Table I The Effect of the Pulse Height Distribution on the Signal-to-Noise-in-Signal Ratio Attained in Analog Measurements

Tables Icon

Table II Summary of Photomultiplier Data Relating to Quantum Efficiency

Tables Icon

Table III Calculation of the Collection Efficiency by Measurement of the Currents Flowing in the Dynode Leads Under Normal Illumination

Tables Icon

Table IV Normalized Factorial Moments for Coherent Illumination of a 56 TVP Photomultiplier

Tables Icon

Table V Summary of Photomultiplier Photon Counting and Dark Count Properties

Tables Icon

Table VI Photon-Counting Statistics of the Dark Current for a 56 TVP and an FW 130 Compared with Poisson Statistics

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

n r = μ r ,
var ( n r ) = var ( n 1 ) μ r 1 [ ( μ r 1 ) / ( μ 1 ) ] ,
n 1 2 = n 1 = μ ,
n r 2 = μ r [ ( μ r 1 ) / ( μ 1 ) ] .
Δ = var ( n r ) / n r 2 ,
Δ = 1 μ r ( μ r 1 μ 1 ) = ( 1 μ r μ 1 ) .
Δ 1 / μ
Δ 1 / μ r .
P ( n ) = μ n ( μ + 1 ) n + 1 .
P ( n ) = ( n + s 1 n ) ( μ / s ) n ( μ / s + 1 ) s n
var ( n r ) = [ ( b μ + 1 ) / ( μ + 1 ) ] μ 2 .
n = m η F .
α = η F .
Q k = r q r Y r h [ ( k r ) τ ] ,
S T ( Ω ) = 1 N τ | k = 0 N Q k e i Ω k τ | 2
= { 1 N τ j , k = 0 N r , s = 0 N q r q s * Y r Y s * h [ ( k r ) τ ] h * [ ( j s ) τ ] exp [ i Ω ( k j ) τ ] } .
S T ( Ω ) = | G ( Ω ) | 2 [ n q 2 + q 2 n 2 δ ( Ω ) N τ ] ,
S T ( Ω ) = 1 N τ | k = 0 N Q k e i Ω k τ | 2 ,
V N = e R ( 2 m η F g 2 Δ f ) 1 2 ,
V S = e R m η F g .
V S V N = ( m η F 2 Δ f g 2 g 2 ) 1 2 ,
V S V N = ( m η F 2 Δ f ) 1 2 [ 1 + var ( g ) g 2 ] 1 2 .
g app = anode radiant sensitivity cathode radiant sensitivity .
g app = F g .
n ( r ) = 1 ,
n ( r ) = r ! .
F F 0 = [ 1 + var ( g ) g 2 ] 1 2 ,
V S V N = [ m η F 2 Δ f ] 1 2 [ 1 + var ( g ) g 2 ] 1 2 .
( 1 + 1 / μ ) 1 2 0.9
log 10 F = 1 10 [ S / var ( S ) ] d b log 10 ( S k W ) ,
α = Count rate × photon energy incident power × 100 % .

Metrics