Abstract

In the first application of thin films discussed, a multilayer stack is enclosed in a cemented cube to form a polarizing beam splitter. Polarizing efficiencies exceeding 99.8% have been achieved in both reflected and transmitted beams at the design wavelength. In the second application, the deposition of thin films on the totally reflecting surfaces of silica phase retarding systems has resulted in a substantial improvement in achromatism of these devices. Measured phase retardations of one of the two devices described were within 0.5° of 90° over the visible and uv to wavelengths down to 200 nm.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. King, J. Sci. Instrum. 43, 617 (1966).
    [CrossRef]
  2. H. Schröder, Optik 3, 499 (1948).
  3. F. Abelès, J. Phys. Radium 11, 403 (1950).
    [CrossRef]
  4. S. M. MacNeille, U.S. Patent2,403,731 (9July1946).
  5. M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
    [CrossRef]
  6. H. Schröder, R. Schläfer, Z. Naturforsch 4a, 576 (1949).
  7. G. Pridatko, T. Krylova, Opt.-Mekh. Promyshl. 3, 23 (1958).
  8. F. A. Makovskii, Zh. Tekhn. Fiz. 24, 1859 (1954).
  9. R. S. Sokolova, T. N. Krylova, Opt. Spectrosc. 14, 213 (1963).
  10. A. F. Turner, P. W. Baumeister, Appl. Opt. 5, 69 (1966).
    [CrossRef] [PubMed]
  11. J. J. Vera, Opt. Acta 11, 315 (1964).
    [CrossRef]
  12. P. B. Clapham, Brit. J. Appl. Phys. 18, 363 (1967).
    [CrossRef]
  13. H. Tamura, H. Kumura, Japan J. Appl. Phys. 4, 622 (1965).
    [CrossRef]
  14. F. Abelès, J. Phys. Radium 11, 310 (1950).
    [CrossRef]
  15. F. Abelès, Ann. Phys. 3, 504 (1948).
  16. G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
    [CrossRef]
  17. A. E. Oxley, Phil. Mag. 21, 517 (1911).
  18. V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).
  19. R. J. King, M. J. Downs, Proceedings of 1968 Conference on Recent Developments in Ellipsometry, Lincoln, Nebraska, to be published.

1967 (1)

P. B. Clapham, Brit. J. Appl. Phys. 18, 363 (1967).
[CrossRef]

1966 (2)

1965 (1)

H. Tamura, H. Kumura, Japan J. Appl. Phys. 4, 622 (1965).
[CrossRef]

1964 (2)

J. J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).

1963 (1)

R. S. Sokolova, T. N. Krylova, Opt. Spectrosc. 14, 213 (1963).

1959 (1)

G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
[CrossRef]

1958 (1)

G. Pridatko, T. Krylova, Opt.-Mekh. Promyshl. 3, 23 (1958).

1954 (1)

F. A. Makovskii, Zh. Tekhn. Fiz. 24, 1859 (1954).

1950 (2)

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

1949 (1)

H. Schröder, R. Schläfer, Z. Naturforsch 4a, 576 (1949).

1948 (2)

H. Schröder, Optik 3, 499 (1948).

F. Abelès, Ann. Phys. 3, 504 (1948).

1947 (1)

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

1911 (1)

A. E. Oxley, Phil. Mag. 21, 517 (1911).

Abelès, F.

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

F. Abelès, Ann. Phys. 3, 504 (1948).

Banning, M.

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

Baumeister, P. W.

Clapham, P. B.

P. B. Clapham, Brit. J. Appl. Phys. 18, 363 (1967).
[CrossRef]

Downs, M. J.

R. J. King, M. J. Downs, Proceedings of 1968 Conference on Recent Developments in Ellipsometry, Lincoln, Nebraska, to be published.

Hass, G.

G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
[CrossRef]

King, R. J.

R. J. King, J. Sci. Instrum. 43, 617 (1966).
[CrossRef]

R. J. King, M. J. Downs, Proceedings of 1968 Conference on Recent Developments in Ellipsometry, Lincoln, Nebraska, to be published.

Kizel, V. A.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).

Krasilov, Yu. I.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).

Krylova, T.

G. Pridatko, T. Krylova, Opt.-Mekh. Promyshl. 3, 23 (1958).

Krylova, T. N.

R. S. Sokolova, T. N. Krylova, Opt. Spectrosc. 14, 213 (1963).

Kumura, H.

H. Tamura, H. Kumura, Japan J. Appl. Phys. 4, 622 (1965).
[CrossRef]

MacNeille, S. M.

S. M. MacNeille, U.S. Patent2,403,731 (9July1946).

Makovskii, F. A.

F. A. Makovskii, Zh. Tekhn. Fiz. 24, 1859 (1954).

Oxley, A. E.

A. E. Oxley, Phil. Mag. 21, 517 (1911).

Pridatko, G.

G. Pridatko, T. Krylova, Opt.-Mekh. Promyshl. 3, 23 (1958).

Ramsey, J. B.

G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
[CrossRef]

Schläfer, R.

H. Schröder, R. Schläfer, Z. Naturforsch 4a, 576 (1949).

Schröder, H.

H. Schröder, R. Schläfer, Z. Naturforsch 4a, 576 (1949).

H. Schröder, Optik 3, 499 (1948).

Shamraev, V. N.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).

Sokolova, R. S.

R. S. Sokolova, T. N. Krylova, Opt. Spectrosc. 14, 213 (1963).

Tamura, H.

H. Tamura, H. Kumura, Japan J. Appl. Phys. 4, 622 (1965).
[CrossRef]

Thun, R.

G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
[CrossRef]

Turner, A. F.

Vera, J. J.

J. J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

Ann. Phys. (1)

F. Abelès, Ann. Phys. 3, 504 (1948).

Appl. Opt. (1)

Brit. J. Appl. Phys. (1)

P. B. Clapham, Brit. J. Appl. Phys. 18, 363 (1967).
[CrossRef]

J. Opt. Soc. Amer. (2)

G. Hass, J. B. Ramsey, R. Thun, J. Opt. Soc. Amer. 49, 116 (1959).
[CrossRef]

M. Banning, J. Opt. Soc. Amer. 37, 792 (1947).
[CrossRef]

J. Phys. Radium (2)

F. Abelès, J. Phys. Radium 11, 403 (1950).
[CrossRef]

F. Abelès, J. Phys. Radium 11, 310 (1950).
[CrossRef]

J. Sci. Instrum. (1)

R. J. King, J. Sci. Instrum. 43, 617 (1966).
[CrossRef]

Japan J. Appl. Phys. (1)

H. Tamura, H. Kumura, Japan J. Appl. Phys. 4, 622 (1965).
[CrossRef]

Opt. Acta (1)

J. J. Vera, Opt. Acta 11, 315 (1964).
[CrossRef]

Opt. Spectrosc. (2)

R. S. Sokolova, T. N. Krylova, Opt. Spectrosc. 14, 213 (1963).

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, Opt. Spectrosc. 17, 248 (1964).

Opt.-Mekh. Promyshl. (1)

G. Pridatko, T. Krylova, Opt.-Mekh. Promyshl. 3, 23 (1958).

Optik (1)

H. Schröder, Optik 3, 499 (1948).

Phil. Mag. (1)

A. E. Oxley, Phil. Mag. 21, 517 (1911).

Z. Naturforsch (1)

H. Schröder, R. Schläfer, Z. Naturforsch 4a, 576 (1949).

Zh. Tekhn. Fiz. (1)

F. A. Makovskii, Zh. Tekhn. Fiz. 24, 1859 (1954).

Other (2)

S. M. MacNeille, U.S. Patent2,403,731 (9July1946).

R. J. King, M. J. Downs, Proceedings of 1968 Conference on Recent Developments in Ellipsometry, Lincoln, Nebraska, to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of polarizing beam splitter, showing angles of refraction within the multilayer.

Fig. 2
Fig. 2

Compatible values of nH and nG for two practicable values of nL. Angle of incidence 45°.

Fig. 3
Fig. 3

Computed variation of Rp (%) with angle of incidence for beam splitters with nH = 2.04, nL = 1.385, and nG = 1.62.

Fig. 4
Fig. 4

Measured characteristics of [(L/2) H (L/2)]5 beam splitter using zirconium oxide and magnesium fluoride films.

Fig. 5
Fig. 5

(a) Coated Fresnel rhomb; (b) coated three reflection device.

Fig. 6
Fig. 6

Measured phase retardations of (1) uncoated silica rhomb; (2) coated silica rhomb; (3) coated three-reflection device.

Tables (3)

Tables Icon

Table I Values of Rs(%) for Various Multilayer Stacksa

Tables Icon

Table II Refractive Index of Zirconium Oxide Films Deposited on Substrates at Various Temperatures

Tables Icon

Table III Computed Phase Retardation Values for Various Quarter-Wave Systems

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n G 2 = ( 2 n L 2 n H 2 ) / ( n L 2 + n H 2 ) ,
For p component n ¯ G = n G / cos θ G ; n ¯ L = n L / cos θ L ; n ¯ H = n H / cos θ H . For s component n ¯ G = n G cos θ G ; n ¯ L = n L cos θ L ; n ¯ H = n H cos θ H .
R = ( n ¯ G 2 + n ¯ L 2 ) 2 ( n ¯ H 2 m n ¯ L 2 m ) 2 ( n ¯ G 2 + n ¯ L 2 ) 2 ( n ¯ H 2 m n ¯ L 2 m ) 2 + 16 n ¯ H 2 m n ¯ G 2 n ¯ L 2 m + 2 .
R = ( n ¯ L 2 m n ¯ H 2 m n ¯ L 2 m + n ¯ H 2 m ) .
tan ( δ / 2 ) = cos θ ( n 2 sin 2 θ 1 ) 1 2 n sin 2 θ ,
cot θ m = [ ( n 2 1 ) / 2 ] 1 2 ,
tan ( δ m / 2 ) = ( n 2 1 ) / 2 n .
( L 2 H L 2 ) m

Metrics