Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Goody, Atmospheric Radiation (Clarendon Press, Ltd., Oxford, 1964), Vol. 1, p. 389.
  2. J. H. Jaffe, in Advances in Spectroscopy, H. W. Thompson, Ed. (Interscience Publishers, Ltd., London, 1961), Vol. 2, pp. 263–291.
  3. J. H. Jaffe, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 3, 87 (1963).
    [CrossRef]
  4. D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
    [CrossRef]
  5. E. M. Deutschman, R. F. Calfee, “Two Computer Programs to Produce Theoretical Absorption Spectra of Water Vapor and Carbon Dioxide,” ESSA Tech. Rep. IER 31–ITSA 31 (April, 1967).
  6. R. F. Calfee, J. Quant. Spectrosc. Radiat. Transfer 6, 221 (1966).
    [CrossRef]

1966 (1)

R. F. Calfee, J. Quant. Spectrosc. Radiat. Transfer 6, 221 (1966).
[CrossRef]

1963 (1)

J. H. Jaffe, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 3, 87 (1963).
[CrossRef]

1962 (1)

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
[CrossRef]

Benedict, W. S.

J. H. Jaffe, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 3, 87 (1963).
[CrossRef]

Burch, D. E.

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
[CrossRef]

Calfee, R. F.

R. F. Calfee, J. Quant. Spectrosc. Radiat. Transfer 6, 221 (1966).
[CrossRef]

E. M. Deutschman, R. F. Calfee, “Two Computer Programs to Produce Theoretical Absorption Spectra of Water Vapor and Carbon Dioxide,” ESSA Tech. Rep. IER 31–ITSA 31 (April, 1967).

Deutschman, E. M.

E. M. Deutschman, R. F. Calfee, “Two Computer Programs to Produce Theoretical Absorption Spectra of Water Vapor and Carbon Dioxide,” ESSA Tech. Rep. IER 31–ITSA 31 (April, 1967).

Goody, R. M.

R. M. Goody, Atmospheric Radiation (Clarendon Press, Ltd., Oxford, 1964), Vol. 1, p. 389.

Jaffe, J. H.

J. H. Jaffe, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 3, 87 (1963).
[CrossRef]

J. H. Jaffe, in Advances in Spectroscopy, H. W. Thompson, Ed. (Interscience Publishers, Ltd., London, 1961), Vol. 2, pp. 263–291.

Singleton, E. B.

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
[CrossRef]

Williams, D.

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
[CrossRef]

Appl. Opt (1)

D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt, 1, 359 (1962).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

J. H. Jaffe, W. S. Benedict, J. Quant. Spectrosc. Radiat. Transfer 3, 87 (1963).
[CrossRef]

R. F. Calfee, J. Quant. Spectrosc. Radiat. Transfer 6, 221 (1966).
[CrossRef]

Other (3)

E. M. Deutschman, R. F. Calfee, “Two Computer Programs to Produce Theoretical Absorption Spectra of Water Vapor and Carbon Dioxide,” ESSA Tech. Rep. IER 31–ITSA 31 (April, 1967).

R. M. Goody, Atmospheric Radiation (Clarendon Press, Ltd., Oxford, 1964), Vol. 1, p. 389.

J. H. Jaffe, in Advances in Spectroscopy, H. W. Thompson, Ed. (Interscience Publishers, Ltd., London, 1961), Vol. 2, pp. 263–291.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The anomalous dispersion and absorption coefficients of water vapor as a function of frequency under atmospheric conditions of 50% relative humidity and temperature of 296 K over a 1-km path at sea level.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ n ( 15 ; 760 ) - 1 ] 10 6 = 64.328 + 29498.1 ( 146 - ν 2 ) - 1 + 225.4 ( 41 - ν 2 ) - 1 ,
[ n ( θ ; P ) - 1 ] = [ n ( 15 : 760 ) - 1 ] P [ 1 + P ( 1.049 - 0.0157 θ ) 10 - 6 ] 720.883 ( 1 + 0.003661 θ ) .
Δ ( n - 1 ) 10 6 = 0.0624 - 0.000680 ν 2 1 + 0.003661 θ .
K i ( ν ) = S i α i / π [ ( ν - ν i ) 2 + α i 2 ] - 1 .
n i ( ν ) = n 0 ( ν ) + S i 4 π 2 ν i [ ( ν i - ν ) ( ν - ν i ) 2 + α i 2 ] ,
Δ n ( ν ) = n i ( ν ) - n 0 ( ν ) = S i 4 π 2 ν i [ ( ν i - ν ) ( ν - ν i ) 2 + α i 2 ] .
S ( T , p ) = S 0 p ( T 0 / T ) a exp { ( - E / k ) [ ( T 0 - T ) / ( T 0 T ) ] }
α ( T , P ) = α 0 P e ( T 0 / T ) b .
P e = P + ( B - 1 ) p ,
K ( ν ) = i K i ( ν ) = 1 π S i α i [ ( ν - ν i ) 2 + α i 2 ] - 1 ,
Δ n ( ν ) = i Δ n i ( ν ) = 1 4 π 2 S i ν i ( ν i - ν ) ( ν - ν i ) 2 + α i 2 ,

Metrics