Abstract

A high sensitivity satellite-borne television camera has been developed to measure such faint light sources as auroras. A secondary electron conduction (SEC) television camera tube is used as the image sensor. In the present application for the Rice/NASA satellites code-named Owls, the tube is exposed by the application of a high voltage pulse of 0.1 sec or 0.2 sec duration. The picture is scanned for about 19 sec, and the video is digitized in synchronism with the satellite PCM system. The television data are then telemetered to the ground either real time or stored in one of the tape recorders. The optical system superimposes star images on the picture for azimuthal aspect reference. The sensitivity of the slow scan camera was measured; it agrees with the sensitivity of a camera scanning at normal scan rate. Comparison was made of the relative sensitivity of the camera at the wavelength of the three most important auroral components. The camera has sensitivity comparable with the dark-adapted human eye. The weight of the system is 3.9 kg, and the power dissipation is 3.9 W.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Criswell, B. J. O’Brien, Appl. Opt. 6, 1105 (1967).
    [CrossRef] [PubMed]
  2. B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
    [CrossRef]
  3. B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
    [CrossRef]
  4. Y. Nozawa, Adv. Electron. 22B, 865 (1966).
  5. J. W. Chamberlain, Physics of the Aurora and Airglow (Academic Press, Inc., New York, 1961).
  6. T. N. Davis, G. T. Hicks, J. Geophys. Res. 69, 1931 (1964).
    [CrossRef]
  7. G. R. Cresswell, C. S. Deehr, T. J. Hallinan, “Television System for Auroral Research,” Sci. Rep. U. of Alaska UAG R–172 (1965).
  8. G. R. Cresswell, T. N. Davis, J. Geophys. Res. 91, 3155 (1966).
    [CrossRef]
  9. J. D. McGee, in The Present and Future of the Astronomical Telescope of Moderate Size, F. B. Wood, Ed. (University of Pennsylvania Press, Philadelphia, 1958).
  10. P. Fellget, Mon. Not. Roy. Astronom. Soc. 118, 224 (1958).
  11. S. B. Mende, “The Detection of Faint Images on Low Contrast by Photoelectric Charge Integration,” Ph.D. Thesis, University of London (1965).
  12. T. N. Davis, in Aurora and Airglow, B. M. McCormac, Ed. (Reinhold Publishing Corp., New York, 1967), p. 133.
  13. D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
    [CrossRef]
  14. Radio Corporation of America, Camera Publication CAM–604, 8–65 (1965).
  15. S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).
  16. E. Martz, Jet Propulsion Laboratory, Pasedena, Calif., private communication, 1966.
  17. L. Kobran, “Effect of Electron Radiation on TV Lens Components,” NASA Tech. Note NASA–TN–D2919 (1965).
  18. R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
    [CrossRef]
  19. G. W. Goetze, A. H. Boerio, Electron. Eng. 52, 1009 (1964).
  20. R. S. Filby, S. B. Mende, Intern. J. Electron. 19, 387 (1966).
    [CrossRef]
  21. G. W. Goetze, Adv. Electron. 22A, 219 (1966).
  22. A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).
  23. R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

1967

D. D. Criswell, B. J. O’Brien, Appl. Opt. 6, 1105 (1967).
[CrossRef] [PubMed]

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

1966

Y. Nozawa, Adv. Electron. 22B, 865 (1966).

R. S. Filby, S. B. Mende, Intern. J. Electron. 19, 387 (1966).
[CrossRef]

G. W. Goetze, Adv. Electron. 22A, 219 (1966).

A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).

R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

G. R. Cresswell, T. N. Davis, J. Geophys. Res. 91, 3155 (1966).
[CrossRef]

1965

Radio Corporation of America, Camera Publication CAM–604, 8–65 (1965).

S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).

1964

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

G. W. Goetze, A. H. Boerio, Electron. Eng. 52, 1009 (1964).

T. N. Davis, G. T. Hicks, J. Geophys. Res. 69, 1931 (1964).
[CrossRef]

B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
[CrossRef]

1958

P. Fellget, Mon. Not. Roy. Astronom. Soc. 118, 224 (1958).

1956

D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
[CrossRef]

Abney, F.

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

Beyer, R. R.

A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).

Boerio, A. H.

A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).

G. W. Goetze, A. H. Boerio, Electron. Eng. 52, 1009 (1964).

Burch, J.

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

Chamberlain, J. W.

D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
[CrossRef]

J. W. Chamberlain, Physics of the Aurora and Airglow (Academic Press, Inc., New York, 1961).

Cresswell, G. R.

G. R. Cresswell, T. N. Davis, J. Geophys. Res. 91, 3155 (1966).
[CrossRef]

G. R. Cresswell, C. S. Deehr, T. J. Hallinan, “Television System for Auroral Research,” Sci. Rep. U. of Alaska UAG R–172 (1965).

Criswell, D. D.

Davis, T. N.

G. R. Cresswell, T. N. Davis, J. Geophys. Res. 91, 3155 (1966).
[CrossRef]

T. N. Davis, G. T. Hicks, J. Geophys. Res. 69, 1931 (1964).
[CrossRef]

T. N. Davis, in Aurora and Airglow, B. M. McCormac, Ed. (Reinhold Publishing Corp., New York, 1967), p. 133.

Deehr, C. S.

G. R. Cresswell, C. S. Deehr, T. J. Hallinan, “Television System for Auroral Research,” Sci. Rep. U. of Alaska UAG R–172 (1965).

Fellget, P.

P. Fellget, Mon. Not. Roy. Astronom. Soc. 118, 224 (1958).

Filby, R. S.

R. S. Filby, S. B. Mende, Intern. J. Electron. 19, 387 (1966).
[CrossRef]

R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

Goetze, G. W.

A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).

G. W. Goetze, Adv. Electron. 22A, 219 (1966).

G. W. Goetze, A. H. Boerio, Electron. Eng. 52, 1009 (1964).

Gurnett, D. A.

B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
[CrossRef]

Hallinan, T. J.

G. R. Cresswell, C. S. Deehr, T. J. Hallinan, “Television System for Auroral Research,” Sci. Rep. U. of Alaska UAG R–172 (1965).

Hicks, G. T.

T. N. Davis, G. T. Hicks, J. Geophys. Res. 69, 1931 (1964).
[CrossRef]

Hunten, D. M.

D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
[CrossRef]

Kahn, A. A.

S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).

Kobran, L.

L. Kobran, “Effect of Electron Radiation on TV Lens Components,” NASA Tech. Note NASA–TN–D2919 (1965).

LaQuey, R.

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

Laughlin, C. D.

B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
[CrossRef]

Martz, E.

E. Martz, Jet Propulsion Laboratory, Pasedena, Calif., private communication, 1966.

McGee, J. D.

J. D. McGee, in The Present and Future of the Astronomical Telescope of Moderate Size, F. B. Wood, Ed. (University of Pennsylvania Press, Philadelphia, 1958).

Mende, S. B.

R. S. Filby, S. B. Mende, Intern. J. Electron. 19, 387 (1966).
[CrossRef]

R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

S. B. Mende, “The Detection of Faint Images on Low Contrast by Photoelectric Charge Integration,” Ph.D. Thesis, University of London (1965).

Nozawa, Y.

Y. Nozawa, Adv. Electron. 22B, 865 (1966).

O’Brien, B. J.

D. D. Criswell, B. J. O’Brien, Appl. Opt. 6, 1105 (1967).
[CrossRef] [PubMed]

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
[CrossRef]

Roach, F. E.

D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
[CrossRef]

Rosenbloom, M. E.

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

Twiddy, N. D.

R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

Winiecki, T.

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

Adv. Electron.

Y. Nozawa, Adv. Electron. 22B, 865 (1966).

G. W. Goetze, Adv. Electron. 22A, 219 (1966).

A. H. Boerio, R. R. Beyer, G. W. Goetze, Adv. Electron. 22A, 229 (1966).

R. S. Filby, S. B. Mende, N. D. Twiddy, Adv. Electron. 22A, 273 (1966).

Appl. Opt.

Camera Publication CAM–604

Radio Corporation of America, Camera Publication CAM–604, 8–65 (1965).

Electron. Eng.

G. W. Goetze, A. H. Boerio, Electron. Eng. 52, 1009 (1964).

Intern. J. Electron.

R. S. Filby, S. B. Mende, Intern. J. Electron. 19, 387 (1966).
[CrossRef]

S. B. Mende, A. A. Kahn, N. D. Twiddy, Intern. J. Electron. 19, 361 (1965).

J. Atmospher. Terres. Phys.

D. M. Hunten, F. E. Roach, J. W. Chamberlain, J. Atmospher. Terres. Phys. 8, 345 (1956).
[CrossRef]

J. Geophys. Res.

B. J. O’Brien, C. D. Laughlin, D. A. Gurnett, J. Geophys. Res. 69, 1 (1964).
[CrossRef]

T. N. Davis, G. T. Hicks, J. Geophys. Res. 69, 1931 (1964).
[CrossRef]

G. R. Cresswell, T. N. Davis, J. Geophys. Res. 91, 3155 (1966).
[CrossRef]

Mon. Not. Roy. Astronom. Soc.

P. Fellget, Mon. Not. Roy. Astronom. Soc. 118, 224 (1958).

Nature

R. S. Filby, S. B. Mende, M. E. Rosenbloom, N. D. Twiddy, Nature 201, 801 (1964).
[CrossRef]

Rev. Sci. Instrum.

B. J. O’Brien, F. Abney, J. Burch, R. LaQuey, T. Winiecki, Rev. Sci. Instrum. 38, 1058 (1967).
[CrossRef]

Other

J. W. Chamberlain, Physics of the Aurora and Airglow (Academic Press, Inc., New York, 1961).

J. D. McGee, in The Present and Future of the Astronomical Telescope of Moderate Size, F. B. Wood, Ed. (University of Pennsylvania Press, Philadelphia, 1958).

G. R. Cresswell, C. S. Deehr, T. J. Hallinan, “Television System for Auroral Research,” Sci. Rep. U. of Alaska UAG R–172 (1965).

S. B. Mende, “The Detection of Faint Images on Low Contrast by Photoelectric Charge Integration,” Ph.D. Thesis, University of London (1965).

T. N. Davis, in Aurora and Airglow, B. M. McCormac, Ed. (Reinhold Publishing Corp., New York, 1967), p. 133.

E. Martz, Jet Propulsion Laboratory, Pasedena, Calif., private communication, 1966.

L. Kobran, “Effect of Electron Radiation on TV Lens Components,” NASA Tech. Note NASA–TN–D2919 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

The field of view of the Owl photometers and the TV camera. Three consecutive exposures are shown, which are separated by approximately 150 km. The signal of the photometers when crossing an auroral form as a function of time is illustrated as the function Ps.

Fig. 2
Fig. 2

Illustration of an Owl in orbit above an aurora. The magnetic field lines, the orientation magnet and the two-way optical system are shown schematically.

Fig. 3
Fig. 3

Block diagram of the camera systems.

Fig. 4
Fig. 4

The optics system of the Owl camera.

Fig. 5
Fig. 5

The Owl TV signals in the stages of processing: (a) the beam pulses; (b) beam position modulation signal; (c) pulsed video with superimposed preamplifier noise; (d) pulsed video on the output of the video processor; (e) integrated video; and (f) sample pulses of the A–D converter.

Fig. 6
Fig. 6

The actual scan pattern described by the beam in the camera tube using beam position modulation.

Fig. 7
Fig. 7

The light transfer characteristics of various television pick-up devices. By courtesy of Radio Corporation of America.

Fig. 8
Fig. 8

Transmission of the beamsplitter and the trimming filter as a function of wavelength.

Fig. 9
Fig. 9

The view of the satellite deck carrying the Owl camera.

Fig. 10
Fig. 10

TV shutter sectional view (shown in halfway position).

Fig. 11
Fig. 11

Photograph of the SEC vidicon type tube number WX 30516. The over-all tube length is 21.6 cm.

Fig. 12
Fig. 12

Diagram of the Owl SEC vidicon WX 30516 (see text).

Fig. 13
Fig. 13

Signal–current transfer curve for tube 555 at 10 and 30 frames per second.

Fig. 14
Fig. 14

Signal current transfer curve for tube Serial No. 555 in the Owl camera in modes B2 and B3. The abscissa is labeled in terms of equivalent kR at 577 Å. 1 kR is equivalent to 1.45 × 10−4 lm/m2 face plate illumination with a T number of unity.

Fig. 15
Fig. 15

The modulation of the video as a function of equivalent TV line number.

Tables (2)

Tables Icon

Table I The Spectral Response of the Owl TV Camera Three Different Wavelengths Normalized to 5577 Å

Tables Icon

Table II Owl Camera Technical Detailsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

10 9 T / 16 f 2 photons / sec ,
i s = g s I A .
g = R / s A ,
i s = g T / n ,

Metrics