Abstract

The techniques employed to evaluate the performance of conventional aerial imaging systems are extended to the evaluation of space imaging systems. The general concepts are illustrated by employing the Lunar Orbiter as an example. Quality parameters are selected, and methods for their measurements from the Lunar Orbiter imagery are described. Results from statistical communication theory are employed to relate system performance as determined by design objectives to the quality of the reconstructed image. The evaluation of the performance of the Lunar Orbiter I and II imaging systems based upon these results is described. One of the criteria describing the detectability of small objects on the lunar surface is shown to correlate with data obtained from visual inspection of the photographs by trained observers.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Rindfleisch, D. Willingham in Advances in Electronics and Physics, L. Marton, Ed. (Academic Press, Inc., New York, 1966), Vol. 22A, p. 341.
    [CrossRef]
  2. P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
    [CrossRef]
  3. For a recent review article describing quality parameters see, T. Trott, Sine Wave Testing and its Practical Limitations in the Proceedings of the SPIE Seminar-in-Depth, Geometrical Optics, Section VIII, Washington, D.C., 1966.
  4. F. D. Smith, Appl. Opt. 2, 335 (1963).
    [CrossRef]
  5. R. Scott, Photo. Sci. Eng. 9, 237 (1965).
  6. R. Barakat, J. Opt. Soc. Amer. 55, 1217 (1965).
    [CrossRef]
  7. R. Jones, Photo. Sci. Eng. 11, 102 (1967).
  8. E. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, New York, 1960).
  9. O. Schade, J. Soc. Mot. Pict. Tele. Eng. 73, 81 (1964).
  10. L. J. Kosofsky, G. C. Broome, J. Soc. Mot. Pict. Tele. Eng. 74, 773 (1965).
  11. L. J. Kosofsky, Photogram. Eng. 32, 262 (1966).
  12. J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
    [CrossRef]
  13. T. Rindfleisch, Photogram. Eng. 32, 262 (1966).
  14. P. Swerling, IEEE Trans. IT-10, 302 (1964).
  15. W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill Book Company, Inc., New York, 1958), Sec. 11–7.
  16. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Inc., New York1963).
  17. C. Lanezos, Applied Analysis (Prentice Hall, Inc., Princeton, 1956).

1968 (2)

J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
[CrossRef]

P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
[CrossRef]

1967 (1)

R. Jones, Photo. Sci. Eng. 11, 102 (1967).

1966 (2)

T. Rindfleisch, Photogram. Eng. 32, 262 (1966).

L. J. Kosofsky, Photogram. Eng. 32, 262 (1966).

1965 (3)

L. J. Kosofsky, G. C. Broome, J. Soc. Mot. Pict. Tele. Eng. 74, 773 (1965).

R. Scott, Photo. Sci. Eng. 9, 237 (1965).

R. Barakat, J. Opt. Soc. Amer. 55, 1217 (1965).
[CrossRef]

1964 (2)

O. Schade, J. Soc. Mot. Pict. Tele. Eng. 73, 81 (1964).

P. Swerling, IEEE Trans. IT-10, 302 (1964).

1963 (1)

Barakat, R.

R. Barakat, J. Opt. Soc. Amer. 55, 1217 (1965).
[CrossRef]

Broome, G. C.

L. J. Kosofsky, G. C. Broome, J. Soc. Mot. Pict. Tele. Eng. 74, 773 (1965).

Davenport, W. B.

W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill Book Company, Inc., New York, 1958), Sec. 11–7.

Holt, H. E.

J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
[CrossRef]

Jones, R.

R. Jones, Photo. Sci. Eng. 11, 102 (1967).

Kinzly, R. E.

P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
[CrossRef]

Kosofsky, L. J.

L. J. Kosofsky, Photogram. Eng. 32, 262 (1966).

L. J. Kosofsky, G. C. Broome, J. Soc. Mot. Pict. Tele. Eng. 74, 773 (1965).

Lanezos, C.

C. Lanezos, Applied Analysis (Prentice Hall, Inc., Princeton, 1956).

Linfoot, E.

E. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, New York, 1960).

Morris, E. C.

J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
[CrossRef]

O’Neill, E. L.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Inc., New York1963).

Rennilson, J. J.

J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
[CrossRef]

Rindfleisch, T.

T. Rindfleisch, Photogram. Eng. 32, 262 (1966).

T. Rindfleisch, D. Willingham in Advances in Electronics and Physics, L. Marton, Ed. (Academic Press, Inc., New York, 1966), Vol. 22A, p. 341.
[CrossRef]

Roetling, P. G.

P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
[CrossRef]

Root, W. L.

W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill Book Company, Inc., New York, 1958), Sec. 11–7.

Schade, O.

O. Schade, J. Soc. Mot. Pict. Tele. Eng. 73, 81 (1964).

Scott, R.

R. Scott, Photo. Sci. Eng. 9, 237 (1965).

Smith, F. D.

Swerling, P.

P. Swerling, IEEE Trans. IT-10, 302 (1964).

Trabka, E. A.

P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
[CrossRef]

Trott, T.

For a recent review article describing quality parameters see, T. Trott, Sine Wave Testing and its Practical Limitations in the Proceedings of the SPIE Seminar-in-Depth, Geometrical Optics, Section VIII, Washington, D.C., 1966.

Willingham, D.

T. Rindfleisch, D. Willingham in Advances in Electronics and Physics, L. Marton, Ed. (Academic Press, Inc., New York, 1966), Vol. 22A, p. 341.
[CrossRef]

Appl. Opt. (1)

IEEE Trans. (1)

P. Swerling, IEEE Trans. IT-10, 302 (1964).

J. Opt. Soc. Amer. (3)

R. Barakat, J. Opt. Soc. Amer. 55, 1217 (1965).
[CrossRef]

J. J. Rennilson, H. E. Holt, E. C. Morris, J. Opt. Soc. Amer. 58, 747 (1968).
[CrossRef]

P. G. Roetling, E. A. Trabka, R. E. Kinzly, J. Opt. Soc. Amer. 58, 342 (1968).
[CrossRef]

J. Soc. Mot. Pict. Tele. Eng. (2)

O. Schade, J. Soc. Mot. Pict. Tele. Eng. 73, 81 (1964).

L. J. Kosofsky, G. C. Broome, J. Soc. Mot. Pict. Tele. Eng. 74, 773 (1965).

Photo. Sci. Eng. (2)

R. Jones, Photo. Sci. Eng. 11, 102 (1967).

R. Scott, Photo. Sci. Eng. 9, 237 (1965).

Photogram. Eng. (2)

T. Rindfleisch, Photogram. Eng. 32, 262 (1966).

L. J. Kosofsky, Photogram. Eng. 32, 262 (1966).

Other (6)

E. Linfoot, Fourier Methods in Optical Image Evaluation (Focal Press, New York, 1960).

W. B. Davenport, W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill Book Company, Inc., New York, 1958), Sec. 11–7.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Inc., New York1963).

C. Lanezos, Applied Analysis (Prentice Hall, Inc., Princeton, 1956).

T. Rindfleisch, D. Willingham in Advances in Electronics and Physics, L. Marton, Ed. (Academic Press, Inc., New York, 1966), Vol. 22A, p. 341.
[CrossRef]

For a recent review article describing quality parameters see, T. Trott, Sine Wave Testing and its Practical Limitations in the Proceedings of the SPIE Seminar-in-Depth, Geometrical Optics, Section VIII, Washington, D.C., 1966.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Examples of typical reconstructed imagery from Lunar Orbiter II: (a) a medium resolution photographic frame; the outlined area indicates the simultaneous coverage of the high resolution camera, (b) the preexposed data array enlarged about twenty times relative to the photograph in (a), (c) high resolution photograph frame.

Fig. 2
Fig. 2

Test topographic features used to derive system performance criteria.

Fig. 3
Fig. 3

Enlarged portion of a medium resolution frame indicating typical edge targets chosen for modulation transfer function evaluation.

Fig. 4
Fig. 4

Frequency response of the digital filter used to remove scan line structure.

Fig. 5
Fig. 5

A edge trace before and after removal of the scan line structure.

Fig. 6
Fig. 6

Measured modulation transfer functions: (a) Orbiter I medium resolution system; (b) Orbiter II medium resolution system; (c) Orbiter II high resolution system, ■ preflight calibration data.

Fig. 7
Fig. 7

Typical examples of measured dc signal level characteristics — nominal: (a) Orbiter I; (b) Orbiter II.

Fig. 8
Fig. 8

Distribution of the exposure level for the frames analyzed as measured by the closest gray level of the step tablet to the average density of the frame. OE indicates an exposure above step 9. Nominal exposure is about equal to that of step 5 or step 6.

Fig. 9
Fig. 9

Measured total noise power for Orbiter II frames. The dependence upon exposure level is shown.

Fig. 10
Fig. 10

Correlation between signal-to-noise ratio performance criterion and the diameter of the smallest crater detected by visual observers.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D ( x ; y ; α , l ) = D 0 + Δ D ( α ) rect ( x / l ) rect ( y / l ) ,
σ = [ N 0 τ ( ν x , ν ) b 2 { [ S D ( ν x , ν y ; α , l ) / α } d ν x d ν y ] 1 2 ;
σ = [ N 0 [ Δ D ( α ) / α ] 2 l 4 τ ( ν x , ν y ) 2 sinc 2 ( π l ν x ) sinc 2 ( π l ν y ) d ν x d ν y ] 1 2 .
S / N = [ 1 N 0 [ D c ( x , y ) - D B ] 2 d x d y ] 1 2
Q = τ ( ν , x ν y ) 2 S D ( ν x , ν y ) 2 d ν x d ν y ,
ω ( x ) = { sin ( π ν 0 x ) sin ( π ν 0 x / m ) π ν 0 x             π ν 0 x / m x m / ν 0 0 x > m / ν 0

Metrics