Abstract

The spectral response of photocathodes is severely degraded toward the ir portion of the optical spectrum. This paper compares the quantum efficiency of the S–11 and the S–20 photocathodes, based on an absorption diffusion model, with their quantum efficiency as reported by the ITT spectral response curves. This comparison (ratio) shows that the ir-degradation is due primarily to the poor escape probability of a low energy photoelectron over the surface potential barrier rather than degradation in absorption. This ratio is used to estimate an escape probability that is plotted as a function of photon energy.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Burns, “Angular Energy Distribution of Photoelectrons,” Final Rep. LAS–TR–224–43 (May1965) on Contract DA–44–009–ENG–5004 performed for the U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia, by the University of Chicago.
  2. R. H. Fowler, Phys. Rev. 38, 45 (1931).
    [CrossRef]
  3. W. E. Spicer, F. Wooten, Proc. IEEE 51, 1118 (1963).
    [CrossRef]
  4. J. R. Sizelove, J. A. Love, Appl. Opt. 5, 1419 (1966).
    [CrossRef] [PubMed]
  5. N. J. Seachman, “Research on an Image Intensifier Design Philosophy,” Tech. Rep. RTD–TDR–63–4180 (Nov.1963). Prepared by Westinghouse Electric Corporation, Elmira, N. Y., for the AF Avionics Laboratory, Wright-Patterson AFB, Ohio.
  6. J. A. Burton, Photoelectricity (John Wiley & Sons, Inc., New York, 1949), p. 59.
  7. International Telephone and Telegraph Corporation, “Typical Absolute Spectral Response Characteristics of Photoemissive Devices” (1962).
  8. R. B. Leighton, Principles of Modern Physics (McGraw-Hill Book Company, Inc., New York, 1959).
  9. L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), 2nd ed.
  10. W. E. Spicer, Phys. Rev. 112, 114 (1957).
    [CrossRef]

1966

1963

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1118 (1963).
[CrossRef]

1962

International Telephone and Telegraph Corporation, “Typical Absolute Spectral Response Characteristics of Photoemissive Devices” (1962).

1957

W. E. Spicer, Phys. Rev. 112, 114 (1957).
[CrossRef]

1931

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

Burns, J.

J. Burns, “Angular Energy Distribution of Photoelectrons,” Final Rep. LAS–TR–224–43 (May1965) on Contract DA–44–009–ENG–5004 performed for the U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia, by the University of Chicago.

Burton, J. A.

J. A. Burton, Photoelectricity (John Wiley & Sons, Inc., New York, 1949), p. 59.

Fowler, R. H.

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

Leighton, R. B.

R. B. Leighton, Principles of Modern Physics (McGraw-Hill Book Company, Inc., New York, 1959).

Love, J. A.

Schiff, L. I.

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), 2nd ed.

Seachman, N. J.

N. J. Seachman, “Research on an Image Intensifier Design Philosophy,” Tech. Rep. RTD–TDR–63–4180 (Nov.1963). Prepared by Westinghouse Electric Corporation, Elmira, N. Y., for the AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

Sizelove, J. R.

Spicer, W. E.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1118 (1963).
[CrossRef]

W. E. Spicer, Phys. Rev. 112, 114 (1957).
[CrossRef]

Wooten, F.

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1118 (1963).
[CrossRef]

Appl. Opt.

Phys. Rev.

R. H. Fowler, Phys. Rev. 38, 45 (1931).
[CrossRef]

W. E. Spicer, Phys. Rev. 112, 114 (1957).
[CrossRef]

Proc. IEEE

W. E. Spicer, F. Wooten, Proc. IEEE 51, 1118 (1963).
[CrossRef]

Typical Absolute Spectral Response Characteristics of Photoemissive Devices

International Telephone and Telegraph Corporation, “Typical Absolute Spectral Response Characteristics of Photoemissive Devices” (1962).

Other

R. B. Leighton, Principles of Modern Physics (McGraw-Hill Book Company, Inc., New York, 1959).

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), 2nd ed.

J. Burns, “Angular Energy Distribution of Photoelectrons,” Final Rep. LAS–TR–224–43 (May1965) on Contract DA–44–009–ENG–5004 performed for the U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia, by the University of Chicago.

N. J. Seachman, “Research on an Image Intensifier Design Philosophy,” Tech. Rep. RTD–TDR–63–4180 (Nov.1963). Prepared by Westinghouse Electric Corporation, Elmira, N. Y., for the AF Avionics Laboratory, Wright-Patterson AFB, Ohio.

J. A. Burton, Photoelectricity (John Wiley & Sons, Inc., New York, 1949), p. 59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Quantum efficiency for S–11 photocathode.

Fig. 2
Fig. 2

Quantum efficiency for S–20 photocathode.

Fig. 3
Fig. 3

Computed escape probability for S–11 photocathode.

Fig. 4
Fig. 4

Computed escape probability for S–20 photocathode.

Fig. 5
Fig. 5

Photocathode scattering model.

Fig. 6
Fig. 6

Integrated escape probability for S–11 photocathode, σ = 4kT, Z = 2.0 eV, C = 4.5.

Fig. 7
Fig. 7

Integrated escape probability for S–20 photocathode, σ = 4kT, z = 1.7 eV, C = π.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Y B = A P T ( E 0 ) 0 T α ( I / I 0 ) e - x / l d x ,
Y N B = 0 T α ( I / I 0 ) e - x / l d x .
Y N B = ( α l / α l - 1 ) ( e - T / l - e - α T ) + ( α l / α l + 1 ) R e - α T × [ 1 - e - ( α T + T / l ) ] 1 - R R 0 e - 2 α T ,
Y B / Y N B = A P T ( E 0 ) .
P T ( E ) = { 1 + sin 2 [ C ( R - 1 ) 1 2 ] 4 R ( R - 1 ) } - 1 , R < 1 ;
P T ( E 0 ) 0.5 ( 2 π σ 2 ) 1 2 E 0 - 4 σ E 0 + 4 σ P T ( E ) exp - ( E - E 0 ) 2 2 σ 2 d E .
C S - 10 / C S - 11 = ( z S - 20 / z S - 11 ) 1 2 .

Metrics