Abstract

Absorption of 6328-Å radiation by Cr+3 ions in the 2E level is used to determine the population density of this level in a ruby crystal under optical pumping. This method allows a much more accurate and simple determination of the excited state population than has been available previously.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. V. Avisonis, W. R. Willoughby, J. Appl. Phys. 37, 682 (1966).
    [CrossRef]
  2. T. H. Maiman, Phys. Rev. Lett. 4, 564 (1960).
    [CrossRef]
  3. T. Kushida, IEEE J. Quantum Electron. QE-2, 524 (1966).
    [CrossRef]
  4. G. E. Devlin, J. McKenna, A. D. May, A. L. Schawlow, Appl. Opt. 1, 11 (1962).
    [CrossRef]

1966 (2)

P. V. Avisonis, W. R. Willoughby, J. Appl. Phys. 37, 682 (1966).
[CrossRef]

T. Kushida, IEEE J. Quantum Electron. QE-2, 524 (1966).
[CrossRef]

1962 (1)

1960 (1)

T. H. Maiman, Phys. Rev. Lett. 4, 564 (1960).
[CrossRef]

Avisonis, P. V.

P. V. Avisonis, W. R. Willoughby, J. Appl. Phys. 37, 682 (1966).
[CrossRef]

Devlin, G. E.

Kushida, T.

T. Kushida, IEEE J. Quantum Electron. QE-2, 524 (1966).
[CrossRef]

Maiman, T. H.

T. H. Maiman, Phys. Rev. Lett. 4, 564 (1960).
[CrossRef]

May, A. D.

McKenna, J.

Schawlow, A. L.

Willoughby, W. R.

P. V. Avisonis, W. R. Willoughby, J. Appl. Phys. 37, 682 (1966).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

T. Kushida, IEEE J. Quantum Electron. QE-2, 524 (1966).
[CrossRef]

J. Appl. Phys. (1)

P. V. Avisonis, W. R. Willoughby, J. Appl. Phys. 37, 682 (1966).
[CrossRef]

Phys. Rev. Lett. (1)

T. H. Maiman, Phys. Rev. Lett. 4, 564 (1960).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Four-level energy model for ruby.

Fig. 2
Fig. 2

Method for measuring excited state population. C = sapphire-clad ruby, N0 = 1.2 × 1019 cm−3; F1 = angular and spatial filler; F2 = narrow band filter, λ = 6328 Å, Δλ = 10Å, O = Tektronix 555 dual trace oscilloscope; CI = collimator and optical isolator; and L = Spectra-Physics model 119 He–Ne laser.

Fig. 3
Fig. 3

Excited state absorption as a function of time and pumping voltage. Pumping voltage: A = 4.0 kV, B = 3.0 kV, C = 2.0 kV.

Fig. 4
Fig. 4

Δα as a function of pumping voltage. Δα = (σ2σ1)N2.

Fig. 5
Fig. 5

Peak n2 as a function of pumping voltage.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N ˙ 3 = W 13 N 1 - S 32 N 3
N 3 = ( W 13 N 1 - N ˙ 3 ) / S 32 0.
N 4 0.
N 1 + N 2 = N 0 ,
α = Σ i σ i N i = σ 1 N 1 + σ 2 N 2 ,
I = I 0 exp [ - σ 1 N 1 + σ 2 N 2 ) x ] .
Δ α = ( σ 2 - σ 1 ) Δ N 2 = ( σ 2 - σ 1 ) N 2 ,
I = I 0 exp [ - α + Δ α ) x ] .
N 2 = [ ln ( I / I ) ] / [ x ( σ 2 - σ 1 ) ] .
n 2 = N 2 / N 0 K 1 Δ α ,

Metrics