Abstract

Atmospheric transmittance spectra from 0.56 μ to 10.7 μ, obtained over a 25-km horizontal path at sea level, are presented. The sources were six 150-cm diam carbon arc searchlights. A radiometrically calibrated spectrometer equipped with a NaCl prism and a thermocouple detector was used to record the spectral distribution of the radiation transmitted through the atmosphere. The transmittance spectra were obtained for values of precipitable water vapor ranging from 21.5 cm to 43.3 cm. From these spectra the selective transmittance of four atmospheric windows was measured. A plot of selective transmittance as a function of the square root of the precipitable water vapor for the four windows shows that the transmittance in these windows is well described by the statistical model of band absorption.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Streete, J. H. Taylor, S. L. Ball, Appl. Opt. 6, 489 (1967).
    [CrossRef] [PubMed]
  2. L. Elterman, “Atmospheric Attenuation Model, 1964, in the Ultraviolet, Visible, and Infrared Regions for Altitudes to 50 km,” Rept. AFCRI–64–750, Air Force Cambridge Research Laboratories, Bedford, Mass. (1964).
  3. M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).
  4. W. Finkelnburg, J. Appl. Phys. 20, 468 (1949).
    [CrossRef]
  5. R. Stair, W. E. Schneider, J. K. Jackson, Appl. Opt. 2, 1151 (1963)
    [CrossRef]
  6. G. H. Hass, Physics Research Technical Area, Fort Belvoir, Va., private communication.
  7. F. E. Fowle, Astrophys. J. 42, 394 (1915).
    [CrossRef]
  8. D. M. Gates, J. Meteorol. 13, 369 (1956).
    [CrossRef]
  9. J. H. Taylor, H. W. Yates, J. Opt. Soc. Amer. 47, 233 (1957).
  10. H. R. Carlon, Appl. Opt. 4, 1089 (1965).
    [CrossRef]

1967 (1)

1965 (1)

1963 (1)

1957 (1)

J. H. Taylor, H. W. Yates, J. Opt. Soc. Amer. 47, 233 (1957).

1956 (1)

D. M. Gates, J. Meteorol. 13, 369 (1956).
[CrossRef]

1949 (1)

W. Finkelnburg, J. Appl. Phys. 20, 468 (1949).
[CrossRef]

1915 (1)

F. E. Fowle, Astrophys. J. 42, 394 (1915).
[CrossRef]

Ball, S. L.

Carlon, H. R.

Elterman, L.

L. Elterman, “Atmospheric Attenuation Model, 1964, in the Ultraviolet, Visible, and Infrared Regions for Altitudes to 50 km,” Rept. AFCRI–64–750, Air Force Cambridge Research Laboratories, Bedford, Mass. (1964).

Finkelnburg, W.

W. Finkelnburg, J. Appl. Phys. 20, 468 (1949).
[CrossRef]

Fowle, F. E.

F. E. Fowle, Astrophys. J. 42, 394 (1915).
[CrossRef]

Gates, D. M.

D. M. Gates, J. Meteorol. 13, 369 (1956).
[CrossRef]

Hass, G. H.

G. H. Hass, Physics Research Technical Area, Fort Belvoir, Va., private communication.

Jackson, J. K.

Nagel, M. R.

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Pivovonsky, M.

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Schneider, W. E.

Stair, R.

Streete, J. L.

Taylor, J. H.

J. L. Streete, J. H. Taylor, S. L. Ball, Appl. Opt. 6, 489 (1967).
[CrossRef] [PubMed]

J. H. Taylor, H. W. Yates, J. Opt. Soc. Amer. 47, 233 (1957).

Yates, H. W.

J. H. Taylor, H. W. Yates, J. Opt. Soc. Amer. 47, 233 (1957).

Appl. Opt. (3)

Astrophys. J. (1)

F. E. Fowle, Astrophys. J. 42, 394 (1915).
[CrossRef]

J. Appl. Phys. (1)

W. Finkelnburg, J. Appl. Phys. 20, 468 (1949).
[CrossRef]

J. Meteorol. (1)

D. M. Gates, J. Meteorol. 13, 369 (1956).
[CrossRef]

J. Opt. Soc. Amer. (1)

J. H. Taylor, H. W. Yates, J. Opt. Soc. Amer. 47, 233 (1957).

Other (3)

G. H. Hass, Physics Research Technical Area, Fort Belvoir, Va., private communication.

L. Elterman, “Atmospheric Attenuation Model, 1964, in the Ultraviolet, Visible, and Infrared Regions for Altitudes to 50 km,” Rept. AFCRI–64–750, Air Force Cambridge Research Laboratories, Bedford, Mass. (1964).

M. Pivovonsky, M. R. Nagel, Tables of Blackbody Radiation Functions (The Macmillan Company, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scale drawing of geographical location of the atmospheric transmission measurement system.

Fig. 2
Fig. 2

Schematic diagram of the external optical system.

Fig. 3 (a)
Fig. 3 (a)

Atmospheric transmittance spectra. Precipitable cm water vapor: A = 21.5, B = 25.4, C 36.2, D = 43.3.

Fig. 3 (b)
Fig. 3 (b)

Atmospheric transmittance spectra. Precipitable cm water vapor: A = 21.5, B = 25.4, C = 36.2, D = 43.3, E = 26.7.

Fig. 4
Fig. 4

Selective transmittance vs water vapor. Window II: A––data from solar spectra, B––data from 24.9-km horizontal path spectra.

Fig. 5
Fig. 5

Selective transmittance vs water vapor. Window III: A––data from solar spectra, B––data from 24.9-km horizontal path spectra.

Fig. 6
Fig. 6

Selective transmittance vs water vapor. Window IV: A––data from solar spectra, B––data from 24.9-km horizontal path spectra.

Fig. 7
Fig. 7

Selective transmittance vs water vapor. Window V. A––Data from solar spectra, B––data from 24.9-km horizontal path spectra.

Tables (1)

Tables Icon

Table I Wavelength Limits of the Infrared Windows

Metrics