Abstract

An experimental investigation of the depolarization characteristics of complex surfaces illuminated by 6328-Å laser radiation was made on a large scale polarimeter. Measurements were made on specimens such as basalt, limonite, volcanic ash, wet and dry sand, gravel, silt, and foliage in various states of freshness. (For powders and aggregates, depolarization appears more pronounced as the size of the individual particles decreases, and as the roughness and porosity of the surface features increases, whereas depolarization appears less pronounced as water is adsorbed or absorbed.) The depolarization signature of foliage served to characterize a particular species, and dryness of the specimens tended to increase the depolarization. As a practical outcome, it appears that additional surface characterization or signature can be obtained through measurement of depolarization characteristics.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Egan, H. B. Hallock, Proceedings of Symposium on Remote Sensing of Environment held at University of Michigan, Ann Arbor in April 1966 (Infrared Physics Laboratory, University of Michigan, 1966), p. 671.
  2. W. G. Egan, J. Geophys. Res. 12, 3233 (1967).
    [CrossRef]
  3. P. Beckmann, in Electromagnetic Theory and Antennas (Pergamon Press, Inc., New York, 1963), Part 2, p. 717.
  4. K. M. Mitzner, Radio Sci. 1, 27 (1966).
  5. A. K. Fung, Proc. IEEE 54, 395 (1966).
    [CrossRef]
  6. R. D. Kodis, IEEE Trans. AP-14, 77 (1966).
    [CrossRef]
  7. J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
    [CrossRef]
  8. V. Twersky, J. Math. Phys. 8, 589 (1967).
    [CrossRef]
  9. G. R. Valenzuela, IEEE Trans. AP-15, 552 (1967).
    [CrossRef]
  10. J. J. Hopfield, Science 151, 1380 (1966).
    [CrossRef] [PubMed]
  11. W. G. Egan, E. A. Nowatzki, Astron. J. 73, 57 (1968).
    [CrossRef]

1968 (1)

W. G. Egan, E. A. Nowatzki, Astron. J. 73, 57 (1968).
[CrossRef]

1967 (4)

W. G. Egan, J. Geophys. Res. 12, 3233 (1967).
[CrossRef]

J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
[CrossRef]

V. Twersky, J. Math. Phys. 8, 589 (1967).
[CrossRef]

G. R. Valenzuela, IEEE Trans. AP-15, 552 (1967).
[CrossRef]

1966 (4)

J. J. Hopfield, Science 151, 1380 (1966).
[CrossRef] [PubMed]

K. M. Mitzner, Radio Sci. 1, 27 (1966).

A. K. Fung, Proc. IEEE 54, 395 (1966).
[CrossRef]

R. D. Kodis, IEEE Trans. AP-14, 77 (1966).
[CrossRef]

Beckmann, P.

P. Beckmann, in Electromagnetic Theory and Antennas (Pergamon Press, Inc., New York, 1963), Part 2, p. 717.

Cheo, P. K.

J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
[CrossRef]

Cooper, H. G.

J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
[CrossRef]

Egan, W. G.

W. G. Egan, E. A. Nowatzki, Astron. J. 73, 57 (1968).
[CrossRef]

W. G. Egan, J. Geophys. Res. 12, 3233 (1967).
[CrossRef]

W. G. Egan, H. B. Hallock, Proceedings of Symposium on Remote Sensing of Environment held at University of Michigan, Ann Arbor in April 1966 (Infrared Physics Laboratory, University of Michigan, 1966), p. 671.

Fung, A. K.

A. K. Fung, Proc. IEEE 54, 395 (1966).
[CrossRef]

Hallock, H. B.

W. G. Egan, H. B. Hallock, Proceedings of Symposium on Remote Sensing of Environment held at University of Michigan, Ann Arbor in April 1966 (Infrared Physics Laboratory, University of Michigan, 1966), p. 671.

Hopfield, J. J.

J. J. Hopfield, Science 151, 1380 (1966).
[CrossRef] [PubMed]

Kodis, R. D.

R. D. Kodis, IEEE Trans. AP-14, 77 (1966).
[CrossRef]

Mitzner, K. M.

K. M. Mitzner, Radio Sci. 1, 27 (1966).

Nowatzki, E. A.

W. G. Egan, E. A. Nowatzki, Astron. J. 73, 57 (1968).
[CrossRef]

Renau, J.

J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
[CrossRef]

Twersky, V.

V. Twersky, J. Math. Phys. 8, 589 (1967).
[CrossRef]

Valenzuela, G. R.

G. R. Valenzuela, IEEE Trans. AP-15, 552 (1967).
[CrossRef]

Astron. J. (1)

W. G. Egan, E. A. Nowatzki, Astron. J. 73, 57 (1968).
[CrossRef]

IEEE Trans. (2)

G. R. Valenzuela, IEEE Trans. AP-15, 552 (1967).
[CrossRef]

R. D. Kodis, IEEE Trans. AP-14, 77 (1966).
[CrossRef]

J. Geophys. Res. (1)

W. G. Egan, J. Geophys. Res. 12, 3233 (1967).
[CrossRef]

J. Math. Phys. (1)

V. Twersky, J. Math. Phys. 8, 589 (1967).
[CrossRef]

J. Opt. Soc. Amer. (1)

J. Renau, P. K. Cheo, H. G. Cooper, J. Opt. Soc. Amer. 57, 459 (1967).
[CrossRef]

Proc. IEEE (1)

A. K. Fung, Proc. IEEE 54, 395 (1966).
[CrossRef]

Radio Sci. (1)

K. M. Mitzner, Radio Sci. 1, 27 (1966).

Science (1)

J. J. Hopfield, Science 151, 1380 (1966).
[CrossRef] [PubMed]

Other (2)

W. G. Egan, H. B. Hallock, Proceedings of Symposium on Remote Sensing of Environment held at University of Michigan, Ann Arbor in April 1966 (Infrared Physics Laboratory, University of Michigan, 1966), p. 671.

P. Beckmann, in Electromagnetic Theory and Antennas (Pergamon Press, Inc., New York, 1963), Part 2, p. 717.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Apparatus for depolarization measurements. Light from a Spectra-Physics model 12.5 He–Ne laser is linearly polarized either parallel or perpendicular to the plane of incidence at the scatterer by rotation of the laser. The partially depolarized light is analyzed and then detected by the photomultiplier.

Fig. 2
Fig. 2

Haleakala volcanic ash: effect of particle size on depolarization (<1 μ, <37 μ, 37–88 μ): (a) 0° viewing angle, (b) 60° viewing angle.

Fig. 3
Fig. 3

Limonite (Venango County, Pa.): effect of particle size on depolarization (37–88 μ, 1.19–2.38 mm): (a) 0° viewing angle, (b) 60° viewing angle.

Fig. 4
Fig. 4

Basalt (Chimney Rock, N.J.): effect of surface porosity on depolarization: (a) 0° viewing angle, (b) 60° viewing angle.

Fig. 5
Fig. 5

Effect of moisture on depolarization of various soils (beach sand, gravel, silt): (A) beach sand, 0° viewing angle; (B) beach sand, 60° viewing angle; (C) gravel, 0° viewing angle; (D) gravel, 60° viewing angle; (E) silt, 0° viewing angle; (F) silt, 60° viewing angle.

Fig. 6
Fig. 6

Depolarization by evergreen leaves; effect of drying: (A) fresh pine, rhododendron, and holly, 0° viewing angle; (B) fresh pine, rhododendron, and holly, 60° viewing angle; (C) dried pine, rhododendron, and holly, 0° viewing angle; (D) dried pine, rhododendron, and holly, 60° viewing angle.

Tables (1)

Tables Icon

Table I Samples Used in Depolarization Study

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P = % polarization = | I max - I min I max + I min | × 100 ,
D = % depolarization = 100 - ( % polarization ) .

Metrics