Abstract

False spectra produced by intense coherent illumination are studied. This paper presents the well-known geometrical scheme to explain the formation and location of false spectral lines or Rowland ghosts, and from that scheme it was found that the number of ghosts produced by a spectral line is limited. This number is the same for the blazed region of the grating as for the unblazed one, and it includes the Rowland ghosts produced by the line at different spectral orders of the grating. Rowland’s formula, derived on the basis of the geometrical scheme, may be used to calculate ghost wavelengths far away from the parent line. The formula was experimentally checked. Experiments were performed by using a pulsed ruby laser as a light source, and the extreme ghosts were recorded at 1336.9 Å and 10761.5 Å.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Quincke, Poggendorf Ann. 1, 146 (1872); see Refs. 7 and 8.
  2. C. S. Pierce, Amer. J. Math. 2, 330 (1879).
    [CrossRef]
  3. H. A. Rowland, Physical Papers (Johns Hopkins University Press, Baltimore, 1902) p. 525.
  4. A. A. Michelson, Astrophys. J. 18, 278 (1903).
    [CrossRef]
  5. R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 254.
  6. J. A. Anderson, J. Opt. Soc. Amer. 6, 434 (1922).
  7. W. F. Meggers, C. C. Kiess, J. Opt. Soc. Amer. 6, 417 (1922).
    [CrossRef]
  8. C. F. Meyer, The Diffraction of Light, X rays and Material Particles (The University of Chicago Press, Chicago, 1934), p. 174.
  9. Z. H. Heller, J. Opt. Soc. Amer. 53, 395 (1963).
    [CrossRef]

1963 (1)

Z. H. Heller, J. Opt. Soc. Amer. 53, 395 (1963).
[CrossRef]

1922 (2)

J. A. Anderson, J. Opt. Soc. Amer. 6, 434 (1922).

W. F. Meggers, C. C. Kiess, J. Opt. Soc. Amer. 6, 417 (1922).
[CrossRef]

1903 (1)

A. A. Michelson, Astrophys. J. 18, 278 (1903).
[CrossRef]

1879 (1)

C. S. Pierce, Amer. J. Math. 2, 330 (1879).
[CrossRef]

1872 (1)

G. Quincke, Poggendorf Ann. 1, 146 (1872); see Refs. 7 and 8.

Anderson, J. A.

J. A. Anderson, J. Opt. Soc. Amer. 6, 434 (1922).

Heller, Z. H.

Z. H. Heller, J. Opt. Soc. Amer. 53, 395 (1963).
[CrossRef]

Kiess, C. C.

W. F. Meggers, C. C. Kiess, J. Opt. Soc. Amer. 6, 417 (1922).
[CrossRef]

Meggers, W. F.

W. F. Meggers, C. C. Kiess, J. Opt. Soc. Amer. 6, 417 (1922).
[CrossRef]

Meyer, C. F.

C. F. Meyer, The Diffraction of Light, X rays and Material Particles (The University of Chicago Press, Chicago, 1934), p. 174.

Michelson, A. A.

A. A. Michelson, Astrophys. J. 18, 278 (1903).
[CrossRef]

Pierce, C. S.

C. S. Pierce, Amer. J. Math. 2, 330 (1879).
[CrossRef]

Quincke, G.

G. Quincke, Poggendorf Ann. 1, 146 (1872); see Refs. 7 and 8.

Rowland, H. A.

H. A. Rowland, Physical Papers (Johns Hopkins University Press, Baltimore, 1902) p. 525.

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 254.

Amer. J. Math. (1)

C. S. Pierce, Amer. J. Math. 2, 330 (1879).
[CrossRef]

Astrophys. J. (1)

A. A. Michelson, Astrophys. J. 18, 278 (1903).
[CrossRef]

J. Opt. Soc. Amer. (3)

J. A. Anderson, J. Opt. Soc. Amer. 6, 434 (1922).

W. F. Meggers, C. C. Kiess, J. Opt. Soc. Amer. 6, 417 (1922).
[CrossRef]

Z. H. Heller, J. Opt. Soc. Amer. 53, 395 (1963).
[CrossRef]

Poggendorf Ann. (1)

G. Quincke, Poggendorf Ann. 1, 146 (1872); see Refs. 7 and 8.

Other (3)

C. F. Meyer, The Diffraction of Light, X rays and Material Particles (The University of Chicago Press, Chicago, 1934), p. 174.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 254.

H. A. Rowland, Physical Papers (Johns Hopkins University Press, Baltimore, 1902) p. 525.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometrical scheme to interpret formation and location of ghosts (see Refs. 5 and 8). AC is the wavefront of the diffracted radiation of wavelength λ0 at first order. If AD is the wavefront of the ghost of the order n, its wavlength is λ′ = λ0 (1 − na/b). AB and AE are the limit ghost wavefronts in the blazed part of the grating and their wavelengths are λ′d = 0 = 0 and λ′ d =π/2 = a/m.

Fig. 2
Fig. 2

Part of spectrograms showing ghosts far away from the parent line and reference lines. Weak ghosts are observed at both sides of intense ones. The distance between ghosts is 5.78 Å. (a) Central ghost wavelength 1388.9 Å (no reference lines in this region). (b) Central ghost wavelength 3818.4 Å. Fe lines at I order: 11—3815.84 Å and 12—3820.43 Å. (c) Central ghost wavelength 10,067.3 Å. Fe lines at III order: 47—3355.23Å and 48—3369.55 Å. (d) Central ghost wavelength 10,761.5 Å. Fe lines at III order: 44—3584.66 Å and 45—3594.64 Å.

Fig. 3
Fig. 3

Position of measured, estimated, and observed intense ghosts— measured, – – estimated, and ---, observed. At. each incident angle i two ghost wavelengths are marked, and the order of ghosts n is indicated at the top of each one.

Tables (1)

Tables Icon

Table I Comparison Between Measured and Computed Ghost Wavelengths for Some n Values

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ = λ 0 ( 1 ± n a / m b ) ,
Δ λ = λ 0 a / m b .
λ = a ( sin i + sin d ) / m .

Metrics