Abstract

When spines on the scape and pedicel of two species of saturnid moths were irradiated with visible coherent (6328 Å) and incoherent radiation, the sensors responded to the light by sending a biphasic nerve impulse down the entire length of the central antennal nerve. The biphasic action potential apparently gates the antennae and prevents the moth from responding to environmental signals during daylight.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. K. Böhm, Arb. Zool. Inst. Wien 19, 219 (1911).
  2. P. S. Callahan, E. F. Taschenberg, T. Carlysle, Ann. Entomol. Soc. Amer.61(1968), in press.
  3. P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 727 (1965).
  4. P. S. Callahan, Misc. Publ. Entomol. Soc. Amer. 7, 315 (1967).
  5. E. C. Okress, Appl. Opt. 4, 1350 (1965).
    [CrossRef]
  6. D. G. Kiely, Dielectric Aerials (Methuen and Company, Ltd., London, 1953), pp. 132.
  7. P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 746 (1965).
  8. P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 159 (1965).

1967 (1)

P. S. Callahan, Misc. Publ. Entomol. Soc. Amer. 7, 315 (1967).

1965 (4)

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 746 (1965).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 159 (1965).

E. C. Okress, Appl. Opt. 4, 1350 (1965).
[CrossRef]

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 727 (1965).

1911 (1)

L. K. Böhm, Arb. Zool. Inst. Wien 19, 219 (1911).

Böhm, L. K.

L. K. Böhm, Arb. Zool. Inst. Wien 19, 219 (1911).

Callahan, P. S.

P. S. Callahan, Misc. Publ. Entomol. Soc. Amer. 7, 315 (1967).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 159 (1965).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 746 (1965).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 727 (1965).

P. S. Callahan, E. F. Taschenberg, T. Carlysle, Ann. Entomol. Soc. Amer.61(1968), in press.

Carlysle, T.

P. S. Callahan, E. F. Taschenberg, T. Carlysle, Ann. Entomol. Soc. Amer.61(1968), in press.

Kiely, D. G.

D. G. Kiely, Dielectric Aerials (Methuen and Company, Ltd., London, 1953), pp. 132.

Okress, E. C.

Taschenberg, E. F.

P. S. Callahan, E. F. Taschenberg, T. Carlysle, Ann. Entomol. Soc. Amer.61(1968), in press.

Ann. Entomol. Soc. Amer. (3)

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 727 (1965).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 746 (1965).

P. S. Callahan, Ann. Entomol. Soc. Amer. 58, 159 (1965).

Appl. Opt. (1)

Arb. Zool. Inst. Wien (1)

L. K. Böhm, Arb. Zool. Inst. Wien 19, 219 (1911).

Misc. Publ. Entomol. Soc. Amer. (1)

P. S. Callahan, Misc. Publ. Entomol. Soc. Amer. 7, 315 (1967).

Other (2)

D. G. Kiely, Dielectric Aerials (Methuen and Company, Ltd., London, 1953), pp. 132.

P. S. Callahan, E. F. Taschenberg, T. Carlysle, Ann. Entomol. Soc. Amer.61(1968), in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Antennae of cecropia moth, Hyalophora cecropia L., showing the lateral arms that support thousands of micro-miniature spines. The light waveguides are located on the pedicel and scape at the base of the antennae where it joins the head of a moth.

Fig. 2
Fig. 2

Photomicrograph of the light dielectric waveguide spines of a cecropia moth. Note that they are transparent and that the base can be seen through the spine.

Fig. 3
Fig. 3

Morphology of a single dielectric waveguide spine 60 μ long: (A) hollow waveguide cone with narrow wall; (B) doughnut-shaped base of the spine; (C) aperture through which the nerve of the spine penetrates the cuticle of the insect; (D) epicuticle; (E) large nerve with a central coaxial sheath; (F) exocuticle; (G) endocuticle; and (H) epithelium layer with nerve cell.

Fig. 4
Fig. 4

Moth prepared for irradiation: (a) dc amplifier; (b) moth mounted in clay with electrode inserted in antennae; (c) light source with chopper; and (d) helium–neon laser (6328 Å).

Fig. 5
Fig. 5

Response (2 mV/cm at 0.1 sec/cm), at the base of the antennal nerve where it joins with the deutocerebrum, of the eye irradiated by a 6328-Å coherent red laser beam (chopped 12/sec). Note that the wave is biphasic.

Fig. 6
Fig. 6

Response (2 mV/cm at 0.1 sec/cm) of the scape dome sensor to irradiation (chopped 12/sec) by monochromatic visible light at 52.2% transmittance of yellow-green radiation (Kodak filter #58 = 5200 Å).

Fig. 7
Fig. 7

Response (1 mV/cm at 0.1 sec/cm) of the scape dome sensor to irradiation by wide band white light. The electrode was inserted at the base of the scape (chopped 7/sec).

Fig. 8
Fig. 8

Response (1 mV/cm at 5 msec/cm) of scape–pedicel dome sensor to irradiation by white light; probe inserted at tip of the antennae.

Fig. 9
Fig. 9

Response (1 mV/cm at 5 msec/cm) of scape–pedicel dome sensor to irradiation by red laser (6328 Å); probe inserted at tip of the antennae.

Fig. 10
Fig. 10

Moth vibrating antennae (2 mV/cm at 0.1 sec/cm) to produce chopping frequency (about 16/sec) for incoming visible radiation.

Fig. 11
Fig. 11

Response (1 mV/cm at 5 msec/cm) to irradiation by continuous laser light with the antennae vibrating and modulating the incoming radiation.

Tables (1)

Tables Icon

Table I Radiation in erg/cm2 sec × 106 at 10.16 cm from Filter Surface for Three Different Light Intensities

Metrics