Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Robertson, Nature 152, 411 (1943).
    [CrossRef]
  2. L. Bragg, Nature 154, 69 (1944).
    [CrossRef]
  3. W. Meyer-Eppler, Optik 1, 465 (1946).
  4. H. J. Wilde, “Generation of Two-Dimensional Optical Spatial Auto- and Cross-Correlation Functions,” U. S. Navy Underwater Sound Laboratory Report No. 744, 13December1966.
  5. P. L. Jackson, Appl. Opt. 6, 1272 (1967).
    [CrossRef] [PubMed]
  6. D. Gabor, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1961), Vol. 1, pp. 111–152.
    [CrossRef]

1967 (1)

1946 (1)

W. Meyer-Eppler, Optik 1, 465 (1946).

1944 (1)

L. Bragg, Nature 154, 69 (1944).
[CrossRef]

1943 (1)

M. M. Robertson, Nature 152, 411 (1943).
[CrossRef]

Bragg, L.

L. Bragg, Nature 154, 69 (1944).
[CrossRef]

Gabor, D.

D. Gabor, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1961), Vol. 1, pp. 111–152.
[CrossRef]

Jackson, P. L.

Meyer-Eppler, W.

W. Meyer-Eppler, Optik 1, 465 (1946).

Robertson, M. M.

M. M. Robertson, Nature 152, 411 (1943).
[CrossRef]

Wilde, H. J.

H. J. Wilde, “Generation of Two-Dimensional Optical Spatial Auto- and Cross-Correlation Functions,” U. S. Navy Underwater Sound Laboratory Report No. 744, 13December1966.

Appl. Opt. (1)

Nature (2)

M. M. Robertson, Nature 152, 411 (1943).
[CrossRef]

L. Bragg, Nature 154, 69 (1944).
[CrossRef]

Optik (1)

W. Meyer-Eppler, Optik 1, 465 (1946).

Other (2)

H. J. Wilde, “Generation of Two-Dimensional Optical Spatial Auto- and Cross-Correlation Functions,” U. S. Navy Underwater Sound Laboratory Report No. 744, 13December1966.

D. Gabor, in Progress in Optics, E. Wolf, Ed. (North-Holland Publishing Co., Amsterdam, 1961), Vol. 1, pp. 111–152.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic correlator.

Fig. 2
Fig. 2

Subdivision of f1 and f2 into discrete elements.

Fig. 3
Fig. 3

Correlogram of a line five-pointed star.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( ξ , η ) = - f 1 ( x , y ) f 2 ( x + ξ , y + η ) d x d y .
ϕ = α λ / ρ 2 = ρ 1 / l
ρ 1 ρ 2 = α λ l ,
ρ 2 = α λ l .
n = ( l tan θ ) 2 / α λ l = ( l tan 2 θ ) / λ α ) .
m = A 1 π ( α λ l ) = A 1 / λ 2 π α ( l / λ ) .
m n = ( A 1 / π α 2 λ 2 ) tan 2 θ .
ϕ ( η ) = j = 1 m f 1 ( x j , y j ) f 2 ( x j + ξ i , y j + η i ) i = 1 n .
( m ) 1 2 = 100 h / l 1 2 ,

Metrics