Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Rogers, Proc. Roy. Soc. (Edinburgh) A63, 193 (1952).
  2. G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965).
    [Crossref]
  3. W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
    [Crossref]
  4. J. H. Altman, Appl. Opt. 5, 1689 (1966).
    [Crossref] [PubMed]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Ltd., Oxford, 1964), 2nd ed., p. 437.
  6. Ref. 5, p. 454.
  7. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Inc., New York, 1965), p. 973.
  8. H. Kogelnik, Microwaves 6, 68 (1967).
  9. R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 38.
  10. M. H. Horman, Appl. Opt. 6, 2011 (1967).
    [Crossref] [PubMed]
  11. J. H. Altman, Photogr. Sci. Eng. 10, 156 (1966).
  12. H. M. Smith, J. Opt. Soc. Amer. 57, 584A (1967).

1967 (3)

H. Kogelnik, Microwaves 6, 68 (1967).

M. H. Horman, Appl. Opt. 6, 2011 (1967).
[Crossref] [PubMed]

H. M. Smith, J. Opt. Soc. Amer. 57, 584A (1967).

1966 (2)

J. H. Altman, Photogr. Sci. Eng. 10, 156 (1966).

J. H. Altman, Appl. Opt. 5, 1689 (1966).
[Crossref] [PubMed]

1965 (2)

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965).
[Crossref]

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[Crossref]

1952 (1)

G. L. Rogers, Proc. Roy. Soc. (Edinburgh) A63, 193 (1952).

Altman, J. H.

J. H. Altman, Appl. Opt. 5, 1689 (1966).
[Crossref] [PubMed]

J. H. Altman, Photogr. Sci. Eng. 10, 156 (1966).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Ltd., Oxford, 1964), 2nd ed., p. 437.

Cathey, W. T.

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[Crossref]

Gradshteyn, I. S.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Inc., New York, 1965), p. 973.

Horman, M. H.

Kogelnik, H.

H. Kogelnik, Microwaves 6, 68 (1967).

Rogers, G. L.

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965).
[Crossref]

G. L. Rogers, Proc. Roy. Soc. (Edinburgh) A63, 193 (1952).

Ryzhik, I. M.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Inc., New York, 1965), p. 973.

Smith, H. M.

H. M. Smith, J. Opt. Soc. Amer. 57, 584A (1967).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Ltd., Oxford, 1964), 2nd ed., p. 437.

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 38.

Appl. Opt. (2)

J. Opt. Soc. Amer. (3)

H. M. Smith, J. Opt. Soc. Amer. 57, 584A (1967).

G. L. Rogers, J. Opt. Soc. Amer. 55, 1181 (1965).
[Crossref]

W. T. Cathey, J. Opt. Soc. Amer. 55, 457 (1965).
[Crossref]

Microwaves (1)

H. Kogelnik, Microwaves 6, 68 (1967).

Photogr. Sci. Eng. (1)

J. H. Altman, Photogr. Sci. Eng. 10, 156 (1966).

Proc. Roy. Soc. (Edinburgh) (1)

G. L. Rogers, Proc. Roy. Soc. (Edinburgh) A63, 193 (1952).

Other (4)

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), p. 38.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Ltd., Oxford, 1964), 2nd ed., p. 437.

Ref. 5, p. 454.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, Inc., New York, 1965), p. 973.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

A schematic of (a) hologram reconstruction and (b) hologram construction.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A ( r , θ ) = 0 2 π d ϕ 0 ρ 0 ρ τ ( ρ ) exp [ i k ( R + S ) ] d ρ 0 2 π d ϕ 0 ρ 0 ρ τ ( ρ ) exp { i k [ R + S + r 2 2 S + ρ 2 2 ( 1 R + 1 S ) - ρ r S cos ( ϕ - θ ) ] } d ρ ,
τ ( ρ ) = exp { i k [ h 0 n 0 - h ( ρ ) ( n 0 - 1 ) ] } ,
h ( ρ ) = a + b D .
D = D 0 + Γ log 10 ( I t 0 / E 0 )
I = a 1 2 + a 2 2 + 2 a 1 a 2 cos [ k ρ 2 2 ( 1 P - 1 Q ) ] a 1 2 + a 2 2 + 2 a 1 a 2 cos ( k ρ 2 / 2 f )
k h ( ρ ) ( 1 - n 0 ) c + d cos ( k ρ 2 / 2 f ) ,
A ( r , θ ) = 0 2 π d ϕ 0 ρ 0 ρ exp { i k [ ρ 2 2 ( 1 R + 1 S ) - ρ r S cos ( ϕ - θ ) ] + i d cos ( k ρ 2 2 f ) } d ρ = 2 π 0 ρ 0 ρ J 0 ( k ρ r S ) exp [ i k ρ 2 2 ( 1 R + 1 S ) + i d cos ( k ρ 2 2 f ) ] d ρ .
exp [ i d cos ( k ρ 2 2 f ) ] = m = - i m J m ( d ) exp ( i m k ρ 2 2 f ) .
| 2 π 0 ρ 0 ρ J 0 ( k ρ r S ) i J - 1 ( d ) d ρ | 2 = | 2 π S ρ 0 k r J 1 ( k ρ 0 r S ) J - 1 ( d ) | 2
| 2 π J 0 ( d ) 0 ρ 0 ρ J 0 ( k ρ r S ) exp [ i k ρ 2 2 ( 1 R + 1 S ) ] d ρ | 2 .

Metrics