Abstract

Laser oscillations have been produced in large crystals of Nd3+-doped Ca5(PO4)3F (the mineral fluorapatite, whence the coined name FAP) at room temperature under both tungsten lamp and flash lamp excitation. The laser tests show that FAP:Nd crystals have four times greater gain per incident pump energy and over one and a half times greater differential (slope) energy efficiency than equal size YAG:Nd crystals. The fluorescence, excitation, and absorption spectra of FAP:Nd are partially polarized, as expected for Nd3+ substituting Ca ii sites of C1h symmetry. The fluorescence lifetime is 0.24 msec at 300°K. Laser oscillations occur at 1.0629 μ in π polarization (Ec), which has 2.6 times the gain of σ polarization (Ec).

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. V. Smith, P. P. Sorokin, The Laser (McGraw-Hill Book Co., Inc., New York, 1966), p. 125.
  2. A. A. Kaminskii, V. V. Osiko, Inorg. Mater. 1, 1853 (1965) [Izv. Akad. Nauk SSSR, Neorg. Mat. 1, 2049 (1965)].
  3. J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
    [CrossRef]
  4. L. F. Johnson, K. Nassau, Proc. Inst. Radio Eng. 49, 1705 (1961); L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Proc. Inst. Radio Eng. 50, 213 (1962); Phys. Rev. 126, 1406 (1962); L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
    [CrossRef]
  5. J. R. O’Connor, Appl. Phys. Letters 9, 407 (1966).
    [CrossRef]
  6. K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).
  7. P. D. Johnson, J. Electrochem. Soc. 108, 159 (1961).
    [CrossRef]
  8. R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
    [CrossRef]
  9. St. Naray-Szabo, Z. Kristallogr. 75, 387 (1930); S. S. Hendricks, M. E. Jefferson, U. M. Mosley, Z. Kristallogr. 81, 352 (1931); R. A. Young, J. C. Elliot, Arch. Oral Biol. 11, 699 (1966).
    [CrossRef] [PubMed]
  10. R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
    [CrossRef]
  11. G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.
  12. R. G. Wagner, Westinghouse Research Laboratories, Pittsburgh, private communication.
  13. R. Ladenberg, Z. Physik 4, 451 (1921); W. B. Fowler, D. L. Dexter, Phys. Rev. 128, 2151 (1962); D. F. Nelson, M. D. Sturge, Phys. Rev. 137, A1117 (1965).
    [CrossRef]
  14. R. J. Pressley, P. V. Goedertier, Tech. Rept. #AFAL–TR–67–100, May1967, available from the Defense Documentation Center, Washington, D. C., as report #AD814949.
  15. W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
    [CrossRef]
  16. D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966); D. W. Goodwin, Phys. Lett. 24A, 283 (1967).
    [CrossRef]
  17. P. A. Miles, I. Goldstein, IEEE Trans. ED-10, 314 (1963).
  18. C. Church, I. Liberman, Appl. Opt. 6, 1966 (1967).
    [CrossRef] [PubMed]

1968 (1)

R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
[CrossRef]

1967 (3)

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).

C. Church, I. Liberman, Appl. Opt. 6, 1966 (1967).
[CrossRef] [PubMed]

1966 (2)

J. R. O’Connor, Appl. Phys. Letters 9, 407 (1966).
[CrossRef]

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966); D. W. Goodwin, Phys. Lett. 24A, 283 (1967).
[CrossRef]

1965 (3)

W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
[CrossRef]

A. A. Kaminskii, V. V. Osiko, Inorg. Mater. 1, 1853 (1965) [Izv. Akad. Nauk SSSR, Neorg. Mat. 1, 2049 (1965)].

J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
[CrossRef]

1963 (1)

P. A. Miles, I. Goldstein, IEEE Trans. ED-10, 314 (1963).

1961 (2)

L. F. Johnson, K. Nassau, Proc. Inst. Radio Eng. 49, 1705 (1961); L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Proc. Inst. Radio Eng. 50, 213 (1962); Phys. Rev. 126, 1406 (1962); L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

P. D. Johnson, J. Electrochem. Soc. 108, 159 (1961).
[CrossRef]

1930 (1)

St. Naray-Szabo, Z. Kristallogr. 75, 387 (1930); S. S. Hendricks, M. E. Jefferson, U. M. Mosley, Z. Kristallogr. 81, 352 (1931); R. A. Young, J. C. Elliot, Arch. Oral Biol. 11, 699 (1966).
[CrossRef] [PubMed]

1921 (1)

R. Ladenberg, Z. Physik 4, 451 (1921); W. B. Fowler, D. L. Dexter, Phys. Rev. 128, 2151 (1962); D. F. Nelson, M. D. Sturge, Phys. Rev. 137, A1117 (1965).
[CrossRef]

Buchanan, R. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

Church, C.

Clay, R. A.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966); D. W. Goodwin, Phys. Lett. 24A, 283 (1967).
[CrossRef]

Dimmock, J. O.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.

Findlay, D.

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966); D. W. Goodwin, Phys. Lett. 24A, 283 (1967).
[CrossRef]

Geusic, J. E.

J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
[CrossRef]

Goedertier, P. V.

R. J. Pressley, P. V. Goedertier, Tech. Rept. #AFAL–TR–67–100, May1967, available from the Defense Documentation Center, Washington, D. C., as report #AD814949.

Goldstein, I.

P. A. Miles, I. Goldstein, IEEE Trans. ED-10, 314 (1963).

Herrmann, G. F.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

Johnson, L. F.

L. F. Johnson, K. Nassau, Proc. Inst. Radio Eng. 49, 1705 (1961); L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Proc. Inst. Radio Eng. 50, 213 (1962); Phys. Rev. 126, 1406 (1962); L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

Johnson, P. D.

P. D. Johnson, J. Electrochem. Soc. 108, 159 (1961).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, V. V. Osiko, Inorg. Mater. 1, 1853 (1965) [Izv. Akad. Nauk SSSR, Neorg. Mat. 1, 2049 (1965)].

Koster, G. F.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.

Kravitz, L. C.

W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
[CrossRef]

Ladenberg, R.

R. Ladenberg, Z. Physik 4, 451 (1921); W. B. Fowler, D. L. Dexter, Phys. Rev. 128, 2151 (1962); D. F. Nelson, M. D. Sturge, Phys. Rev. 137, A1117 (1965).
[CrossRef]

Liberman, I.

Marcos, H. W.

J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
[CrossRef]

Mazelsky, R.

R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
[CrossRef]

K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).

Miles, P. A.

P. A. Miles, I. Goldstein, IEEE Trans. ED-10, 314 (1963).

Naray-Szabo, St.

St. Naray-Szabo, Z. Kristallogr. 75, 387 (1930); S. S. Hendricks, M. E. Jefferson, U. M. Mosley, Z. Kristallogr. 81, 352 (1931); R. A. Young, J. C. Elliot, Arch. Oral Biol. 11, 699 (1966).
[CrossRef] [PubMed]

Nassau, K.

L. F. Johnson, K. Nassau, Proc. Inst. Radio Eng. 49, 1705 (1961); L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Proc. Inst. Radio Eng. 50, 213 (1962); Phys. Rev. 126, 1406 (1962); L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

O’Connor, J. R.

J. R. O’Connor, Appl. Phys. Letters 9, 407 (1966).
[CrossRef]

Ohlmann, R. C.

R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
[CrossRef]

K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).

Osiko, V. V.

A. A. Kaminskii, V. V. Osiko, Inorg. Mater. 1, 1853 (1965) [Izv. Akad. Nauk SSSR, Neorg. Mat. 1, 2049 (1965)].

Pearson, J. J.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

Piper, W. W.

W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
[CrossRef]

Pressley, R. J.

R. J. Pressley, P. V. Goedertier, Tech. Rept. #AFAL–TR–67–100, May1967, available from the Defense Documentation Center, Washington, D. C., as report #AD814949.

Smith, W. V.

W. V. Smith, P. P. Sorokin, The Laser (McGraw-Hill Book Co., Inc., New York, 1966), p. 125.

Sorokin, P. P.

W. V. Smith, P. P. Sorokin, The Laser (McGraw-Hill Book Co., Inc., New York, 1966), p. 125.

Statz, H.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.

Steinbruegge, K. B.

R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
[CrossRef]

K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).

Swank, R. K.

W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
[CrossRef]

Van Uitert, L. G.

J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
[CrossRef]

Wagner, R. G.

R. G. Wagner, Westinghouse Research Laboratories, Pittsburgh, private communication.

Wheeler, R. G.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.

Wickersheim, K. A.

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Letters (2)

J. E. Geusic, H. W. Marcos, L. G. Van Uitert, Appl. Phys. Letters 7, 127 (1965).
[CrossRef]

J. R. O’Connor, Appl. Phys. Letters 9, 407 (1966).
[CrossRef]

Bull. Amer. Phys. Soc. (1)

K. B. Steinbruegge, R. C. Ohlmann, R. Mazelsky, Bull. Amer. Phys. Soc. 12, 90 (1967).

IEEE Trans. (1)

P. A. Miles, I. Goldstein, IEEE Trans. ED-10, 314 (1963).

Inorg. Mater. (1)

A. A. Kaminskii, V. V. Osiko, Inorg. Mater. 1, 1853 (1965) [Izv. Akad. Nauk SSSR, Neorg. Mat. 1, 2049 (1965)].

J. Electrochem. Soc. (2)

P. D. Johnson, J. Electrochem. Soc. 108, 159 (1961).
[CrossRef]

R. Mazelsky, R. C. Ohlmann, K. B. Steinbruegge, J. Electrochem. Soc. 115, 68 (1968).
[CrossRef]

Phys. Lett. (1)

D. Findlay, R. A. Clay, Phys. Lett. 20, 277 (1966); D. W. Goodwin, Phys. Lett. 24A, 283 (1967).
[CrossRef]

Phys. Rev. (2)

W. W. Piper, L. C. Kravitz, R. K. Swank, Phys. Rev. 138, A1802, 1965; R. K. Swank, Phys. Rev. 135, A266 (1964); P. D. Johnson, J. Appl. Phys. 32, 127 (1961).
[CrossRef]

R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, G. F. Herrmann, Phys. Rev. 159, 245 (1967).
[CrossRef]

Proc. Inst. Radio Eng. (1)

L. F. Johnson, K. Nassau, Proc. Inst. Radio Eng. 49, 1705 (1961); L. F. Johnson, G. D. Boyd, K. Nassau, R. R. Soden, Proc. Inst. Radio Eng. 50, 213 (1962); Phys. Rev. 126, 1406 (1962); L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

Z. Kristallogr. (1)

St. Naray-Szabo, Z. Kristallogr. 75, 387 (1930); S. S. Hendricks, M. E. Jefferson, U. M. Mosley, Z. Kristallogr. 81, 352 (1931); R. A. Young, J. C. Elliot, Arch. Oral Biol. 11, 699 (1966).
[CrossRef] [PubMed]

Z. Physik (1)

R. Ladenberg, Z. Physik 4, 451 (1921); W. B. Fowler, D. L. Dexter, Phys. Rev. 128, 2151 (1962); D. F. Nelson, M. D. Sturge, Phys. Rev. 137, A1117 (1965).
[CrossRef]

Other (4)

R. J. Pressley, P. V. Goedertier, Tech. Rept. #AFAL–TR–67–100, May1967, available from the Defense Documentation Center, Washington, D. C., as report #AD814949.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Statz, Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963), pp. 33, 51.

R. G. Wagner, Westinghouse Research Laboratories, Pittsburgh, private communication.

W. V. Smith, P. P. Sorokin, The Laser (McGraw-Hill Book Co., Inc., New York, 1966), p. 125.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fluorescence spectra from Ca5(PO4)3F:Nd at 300°K. The amplitude has been corrected for the spectral quantum sensitivity of the spectrometer and detector system. The amplifier gain for the Ec spectrum was 2.5 times greater than for the Ec spectrum for clarity of presentation.

Fig. 2
Fig. 2

The excitation spectrum of the 1.0629-μ fluorescence line from Ca5(PO4)3F:Nd at 300°K. The amplitude has been corrected for the spectral variation of incident photon flux.

Fig. 3
Fig. 3

Energy levels of three terms of Nd3+ in Ca5(PO4)3F. The dashed lines represent levels which may contain vibrational energy. Fluorescence due to transitions from both 4F3/2 states to all the lower states is observed at 300°K. The transitions shown by arrows are observed at 77°K. The laser transition is indicated by a heavy arrow.

Fig. 4
Fig. 4

Observed decay time of the Nd3+ fluorescence from FAP:Nd at 300°K as a function of the concentration of Nd ions in the crystal as determined by x-ray fluorescence analysis.

Fig. 5
Fig. 5

Laser output vs input energy into a flashlamp for laser rods 6.4-nm diam by 38-mm long in a cylindrical pump cavity. Plane cavity resonators of 99% and 35% reflectivities were used.

Fig. 6
Fig. 6

Laser output vs input energy in a flashlamp for a FAP:Nd laser rod 6.3-mm diam by 250-mm long in a close-coupled pump enclosure. One external 99% reflecting mirror was used. The output was from the uncoated end of the rod.

Tables (4)

Tables Icon

Table I Properties of Calcium Fluorophosphate

Tables Icon

Table II Fluorescence Lines from FAP:Nd (0.4%) at 77°K

Tables Icon

Table III Results of Pulse Laser Tests

Tables Icon

Table IV Results of Continuous Laser Tests

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ - 1 = 8 π n 2 ν ¯ - 2 c ( 2 3 σ σ + 1 3 σ π ) d ν ¯ ,
T 2 R 1 R 2 exp [ 2 ( α - α s ) L ] = 1 ,
α = σ N i = C E T ,
C E T = - ( 2 L ) - 1 ln R 1 R 2 + ( α s - L - 1 ln T ) .
E f = τ - 1 h ν V N ( t ) d t ,
E f h ν V T C ( σ τ ) - 1 E T .
η s h ν E V T C / σ τ .
[ 1 - ( 2 α s L / ln R ) ] - 1 .

Metrics