Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Davis, Appl. Opt. 2, 727 (1963).
    [CrossRef]
  2. G. Schulz, J. Schwider, Appl. Opt. 6, 1077 (1967).
    [CrossRef] [PubMed]
  3. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), p. 330.
  4. Ref. 3, p. 324.

1967 (1)

1963 (1)

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), p. 330.

Davis, S. P.

Schulz, G.

Schwider, J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), p. 330.

Appl. Opt. (2)

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon Press, Inc., New York, 1964), p. 330.

Ref. 3, p. 324.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical arrangement used for measurements down to λ/400: (1) gas laser; (2) lens; (3) rotating mirror; (4) lens; (5) Fabry-Perot; (6) lens; (7) grid; (8) field lens; and (9) photomultiplier.

Fig. 2
Fig. 2

Photographic record of measurements of two points, the difference of which in spacing is λ/400.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D p = ( L n λ 0 F 2 / n 2 h ) 1 2 ( p - 1 + e ) ,
A ( t ) = t t ( 1 + r 2 e i δ + + r 2 ( p - 1 ) e i ( p - 1 ) δ ) A ( i ) ,
δ = ( 4 π / λ 0 ) n h cos θ ,
2 n h cos θ = K λ 0 ( K = 1 , 2 , 3 , , n ) ,
A ( t ) = t t ( 1 + r 2 + + r 2 ( p - 1 ) ) A ( i ) .
A ( p ) ( t ) = t t r 2 ( p - 1 ) A ( i ) .
A ( p ) ( t ) = t t s t 2 r 2 ( p - 1 ) s r 2 ( p - 1 ) A ( i ) ,
D = ( K λ / 2 ) ( 1 / cos θ ) , Δ D Δ θ ( d D / d θ ) ( K λ / 2 ) θ Δ θ ,
2 D cos θ 1 = K λ , 2 D cos θ 2 = ( K - 1 ) λ ,
K = cos θ 1 cos θ 1 - cos θ 2 2 - θ 1 2 θ 2 2 - θ 1 2 2 θ 2 2 - θ 1 2 .
θ i = ( P / F ) n i ,

Metrics