Abstract

Products of the strengths times the self-broadened half-widths of eight lines in the ν2 band of water vapor were obtained by the curve of growth method. The experimental conditions were room temperature (300°K), low pressure (0.5–2.2 torr), long path length (1.98 cm × 104 cm), and an observed resolution of ≈0.5 cm−1. Corrections for the absorptance from overlapping of near lines, for the neglected wing absorptance of the main line, and for the absorptance due to wings of distant lines were made using the Lorentz profile and the results of previous theoretical calculations. The results are generally higher than those previously reported.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
    [CrossRef]
  2. R. Zander, J. Geophys. Res. 71, 3775 (1966).
    [CrossRef]
  3. A. Goldman, U. P. Oppenheim, Appl. Opt. 5, 1073 (1966).
    [CrossRef] [PubMed]
  4. Y. Ben-Aryeh, J. Quantum Spectrosc. Radiat. Transfer 7, 211 (1967).
    [CrossRef]
  5. H. Sakai, “Line Widths and Strengths in the ν2Water Band,” Final Rept. CWB, The Johns Hopkins University (1964).
  6. W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” ESSA Professional Paper 2 (1967).
  7. D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).
  8. H. Sakai, J. Opt. Soc. Amer. 56, 127 (1966).
    [CrossRef]
  9. W. S. Benedict, L. D. Kaplan, J. Quantum Spectrosc. Radiat. Transfer 4, 453 (1964).
    [CrossRef]
  10. L. Sica, Dissertation, The Johns Hopkins University (1966).
  11. H. Sakai, Dissertation, The Johns Hopkins University (1962).

1967 (1)

Y. Ben-Aryeh, J. Quantum Spectrosc. Radiat. Transfer 7, 211 (1967).
[CrossRef]

1966 (3)

H. Sakai, J. Opt. Soc. Amer. 56, 127 (1966).
[CrossRef]

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

A. Goldman, U. P. Oppenheim, Appl. Opt. 5, 1073 (1966).
[CrossRef] [PubMed]

1964 (2)

M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

W. S. Benedict, L. D. Kaplan, J. Quantum Spectrosc. Radiat. Transfer 4, 453 (1964).
[CrossRef]

Ben-Aryeh, Y.

Y. Ben-Aryeh, J. Quantum Spectrosc. Radiat. Transfer 7, 211 (1967).
[CrossRef]

Benedict, W. S.

W. S. Benedict, L. D. Kaplan, J. Quantum Spectrosc. Radiat. Transfer 4, 453 (1964).
[CrossRef]

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” ESSA Professional Paper 2 (1967).

Bottema, M.

M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Burch, D. E.

D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).

Calfee, R. F.

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” ESSA Professional Paper 2 (1967).

France, W. L.

D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).

Goldman, A.

Kaplan, L. D.

W. S. Benedict, L. D. Kaplan, J. Quantum Spectrosc. Radiat. Transfer 4, 453 (1964).
[CrossRef]

Oppenheim, U. P.

Plummer, W.

M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Sakai, H.

H. Sakai, J. Opt. Soc. Amer. 56, 127 (1966).
[CrossRef]

H. Sakai, Dissertation, The Johns Hopkins University (1962).

H. Sakai, “Line Widths and Strengths in the ν2Water Band,” Final Rept. CWB, The Johns Hopkins University (1964).

Sica, L.

L. Sica, Dissertation, The Johns Hopkins University (1966).

Singleton, E. B.

D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).

Strong, J.

M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

Williams, D.

D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).

Zander, R.

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (1)

M. Bottema, W. Plummer, J. Strong, Astrophys. J. 139, 1021 (1964).
[CrossRef]

J. Geophys. Res. (1)

R. Zander, J. Geophys. Res. 71, 3775 (1966).
[CrossRef]

J. Opt. Soc. Amer. (1)

H. Sakai, J. Opt. Soc. Amer. 56, 127 (1966).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transfer (2)

W. S. Benedict, L. D. Kaplan, J. Quantum Spectrosc. Radiat. Transfer 4, 453 (1964).
[CrossRef]

Y. Ben-Aryeh, J. Quantum Spectrosc. Radiat. Transfer 7, 211 (1967).
[CrossRef]

Other (5)

H. Sakai, “Line Widths and Strengths in the ν2Water Band,” Final Rept. CWB, The Johns Hopkins University (1964).

W. S. Benedict, R. F. Calfee, “Line Parameters for the 1.9 and 6.3 Micron Water Vapor Bands,” ESSA Professional Paper 2 (1967).

D. E. Burch, E. B. Singleton, W. L. France, D. Williams, “Infrared Absorption by Minor Atmospheric Constituents,” Final Rept. AFCRL-412 (1960).

L. Sica, Dissertation, The Johns Hopkins University (1966).

H. Sakai, Dissertation, The Johns Hopkins University (1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The equivalent width (W) vs pressure (P) for the 1616.7-cm−1 line. Line L is lowest limit of values obtained from Eq. (13) using bottom of troughs to establish T = 1 level. Results of calculationsa using Eq. (8).

Tables (2)

Tables Icon

Table I Curve of Growth Data for Eight Water Linesa

Tables Icon

Table II Values of S0γ0 All Referred to 300K0a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

W = 0 A ( ν ) d ν .
k ( ν ) = S γ / π ( ν - ν 0 ) 2 + γ 2 .
W = 2 ( S γ L ) 1 2 .
S = S 0 ρ ,
γ = γ 0 P / 760.
W = 2 P [ S 0 γ 0 M L / ( 760 R T ) ] 1 2 .
W = W - ( W 2 / 2 π g ) ,
W = ν 0 - g ν 0 + g A ( ν ) d ν .
W - w W 1 ( 1 + i = 2 M r i ) - W 1 2 2 π g ( 1 + i = 2 M r i 2 ) - 2 [ 2 - ( 2 ) 1 2 ] W 1 i = 2 M r i ( 1 + r i ) ( 1 + r i ) 2 + ( 4 α i / W 1 ) 2 .

Metrics