Abstract

Concurrently with emission measurements of a high pressure xenon arc in the spectral range 3000 Å to 2 μ, its absorption in the ir was measured by a technique based on modulating the less intense radiation of a carbon arc used as background source. The emission measurements were repeated with a rapid scanning spectrometer while flashing the xenon arc for 0.1 see at 10 kW, which is five times the normal power input. The arc showed excellent stability and reproducibility both in the stationary and the flashed modes. The intensity increase of the continuum was proportional to the increase of power input during the flash. A simple expression was derived connecting the spectral radiance of the continuum directly with the temperature and pressure of the arc. The temperature profile of the xenon arc was obtained using this expression and also by applying the Planck-Kirchhoff method to the Abel inverted emission and absorption of an ir xenon line. Both approaches show fair agreement at the arc center. The wavelength dependence of the correction factor for departures from hydrogenic behavior of the xenon continuum was derived from the measured spectral radiances and compared with theoretical calculations.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Freeman, S. Katz, J. Opt. Soc. Amer. 50, 826 (1960).
    [CrossRef]
  2. P. Elder, T. Jerrick, J. W. Birkeland, Appl. Opt. 4, 589 (1965).
    [CrossRef]
  3. R. H. Tourin, J. Quantum Spectrosc. Radiat. Transfer 3, 89 (1963).
    [CrossRef]
  4. W. A. Baum, L. Dunkelman, J. Opt. Soc. Amer. 40, 782 (1950).
    [CrossRef]
  5. J. H. Goncz, P. B. Newell, J. Opt. Soc. Amer. 56, 87 (1966).
    [CrossRef]
  6. U. Kopec, Ann. Phys. 7/12, 209 (1963).
    [CrossRef]
  7. H. Bartels, Z. Phys. 128, 546 (1950).
    [CrossRef]
  8. R. E. Rovinskii, G. P. Razumtseva, Opt. Spectrosc. 7, 431 (1959).
  9. R. H. Tourin, Temperature, Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold Publishing Co., New York, 1962), Vol. III, p. 459.
  10. M. R. Null, W. W. Lozier, J. Opt. Soc. Amer. 52, 1156 (1962).
    [CrossRef]
  11. H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).
  12. S. A. Dolin, H. A. Kruegle, G. J. Penzias, Appl. Opt. 6, 267 (1967).
    [CrossRef] [PubMed]
  13. D. Schlueter, Z. Astrophys. 61, 67 (1965).
  14. H. W. Drawin, P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris, 1965).
  15. W. L. Barr, J. Opt. Soc. Amer. 52, 885 (1962).
    [CrossRef]
  16. L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).
  17. H. J. Babrov, J. Opt. Soc. Amer. 51, 171 (1961).
    [CrossRef]

1967

1966

J. H. Goncz, P. B. Newell, J. Opt. Soc. Amer. 56, 87 (1966).
[CrossRef]

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

1965

1963

U. Kopec, Ann. Phys. 7/12, 209 (1963).
[CrossRef]

R. H. Tourin, J. Quantum Spectrosc. Radiat. Transfer 3, 89 (1963).
[CrossRef]

1962

W. L. Barr, J. Opt. Soc. Amer. 52, 885 (1962).
[CrossRef]

M. R. Null, W. W. Lozier, J. Opt. Soc. Amer. 52, 1156 (1962).
[CrossRef]

1961

L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).

H. J. Babrov, J. Opt. Soc. Amer. 51, 171 (1961).
[CrossRef]

1960

M. P. Freeman, S. Katz, J. Opt. Soc. Amer. 50, 826 (1960).
[CrossRef]

1959

R. E. Rovinskii, G. P. Razumtseva, Opt. Spectrosc. 7, 431 (1959).

1950

W. A. Baum, L. Dunkelman, J. Opt. Soc. Amer. 40, 782 (1950).
[CrossRef]

H. Bartels, Z. Phys. 128, 546 (1950).
[CrossRef]

Babrov, H. J.

H. J. Babrov, J. Opt. Soc. Amer. 51, 171 (1961).
[CrossRef]

Barr, W. L.

W. L. Barr, J. Opt. Soc. Amer. 52, 885 (1962).
[CrossRef]

Bartels, H.

H. Bartels, Z. Phys. 128, 546 (1950).
[CrossRef]

Baum, W. A.

W. A. Baum, L. Dunkelman, J. Opt. Soc. Amer. 40, 782 (1950).
[CrossRef]

Biberman, L. M.

L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).

Birkeland, J. W.

Dolin, S. A.

Drawin, H. W.

H. W. Drawin, P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris, 1965).

Dunkelman, L.

W. A. Baum, L. Dunkelman, J. Opt. Soc. Amer. 40, 782 (1950).
[CrossRef]

Elder, P.

Felenbok, P.

H. W. Drawin, P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris, 1965).

Freeman, M. P.

M. P. Freeman, S. Katz, J. Opt. Soc. Amer. 50, 826 (1960).
[CrossRef]

Goncz, J. H.

J. H. Goncz, P. B. Newell, J. Opt. Soc. Amer. 56, 87 (1966).
[CrossRef]

Jerrick, T.

Katz, S.

M. P. Freeman, S. Katz, J. Opt. Soc. Amer. 50, 826 (1960).
[CrossRef]

Kopec, U.

U. Kopec, Ann. Phys. 7/12, 209 (1963).
[CrossRef]

Kruegle, H. A.

Lozier, W. W.

M. R. Null, W. W. Lozier, J. Opt. Soc. Amer. 52, 1156 (1962).
[CrossRef]

Magdeburg, H.

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

Newell, P. B.

J. H. Goncz, P. B. Newell, J. Opt. Soc. Amer. 56, 87 (1966).
[CrossRef]

Norman, G. E.

L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).

Null, M. R.

M. R. Null, W. W. Lozier, J. Opt. Soc. Amer. 52, 1156 (1962).
[CrossRef]

Penzias, G. J.

Razumtseva, G. P.

R. E. Rovinskii, G. P. Razumtseva, Opt. Spectrosc. 7, 431 (1959).

Rovinskii, R. E.

R. E. Rovinskii, G. P. Razumtseva, Opt. Spectrosc. 7, 431 (1959).

Schley, U.

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

Schlueter, D.

D. Schlueter, Z. Astrophys. 61, 67 (1965).

Tourin, R. H.

R. H. Tourin, J. Quantum Spectrosc. Radiat. Transfer 3, 89 (1963).
[CrossRef]

R. H. Tourin, Temperature, Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold Publishing Co., New York, 1962), Vol. III, p. 459.

Ulyanov, K. N.

L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).

Ann. Phys.

U. Kopec, Ann. Phys. 7/12, 209 (1963).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Amer.

H. J. Babrov, J. Opt. Soc. Amer. 51, 171 (1961).
[CrossRef]

M. P. Freeman, S. Katz, J. Opt. Soc. Amer. 50, 826 (1960).
[CrossRef]

W. L. Barr, J. Opt. Soc. Amer. 52, 885 (1962).
[CrossRef]

W. A. Baum, L. Dunkelman, J. Opt. Soc. Amer. 40, 782 (1950).
[CrossRef]

J. H. Goncz, P. B. Newell, J. Opt. Soc. Amer. 56, 87 (1966).
[CrossRef]

M. R. Null, W. W. Lozier, J. Opt. Soc. Amer. 52, 1156 (1962).
[CrossRef]

J. Quantum Spectrosc. Radiat. Transfer

R. H. Tourin, J. Quantum Spectrosc. Radiat. Transfer 3, 89 (1963).
[CrossRef]

Opt. Spectrosc.

L. M. Biberman, G. E. Norman, K. N. Ulyanov, Opt. Spectrosc. 10, 297 (1961).

R. E. Rovinskii, G. P. Razumtseva, Opt. Spectrosc. 7, 431 (1959).

Z. Angew. Phys.

H. Magdeburg, U. Schley, Z. Angew. Phys. 20, 465 (1966).

Z. Astrophys.

D. Schlueter, Z. Astrophys. 61, 67 (1965).

Z. Phys.

H. Bartels, Z. Phys. 128, 546 (1950).
[CrossRef]

Other

H. W. Drawin, P. Felenbok, Data for Plasmas in Local Thermodynamic Equilibrium (Gauthier-Villars, Paris, 1965).

R. H. Tourin, Temperature, Its Measurement and Control in Science and Industry, C. M. Herzfeld, Ed. (Reinhold Publishing Co., New York, 1962), Vol. III, p. 459.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical system used for concurrent measurements of emission and absorption of the stationary xenon arc.

Fig. 2
Fig. 2

Zones of different brightness in the high pressure xenon arc: (1) cathode spot, (2) arc plasma, (3) red halo.

Fig. 3
Fig. 3

Strip chart record for emission–absorption measurements of the cathode spot of the xenon arc. The gain was 20 for the emission and 350 for the I0 and absorption scans. Slit width: 30 μ.

Fig. 4
Fig. 4

Oscillogram showing three wavelength scans for a flashed xenon arc. The wavelength range 4200–6500 Å was scanned in 10 msec, using an RCA 4473 photomultiplier. Three flashes are superimposed (total of nine scans shown).

Fig. 5
Fig. 5

Wavelength scan of the emission and emission plus back reflection from a mirror of the cathode spot of a flashed xenon arc. The wavelength range 0.7–1.2 μ was scanned in 10 msec using an RCA 7102 photomultiplier.

Fig. 6
Fig. 6

Radial temperature profile of the cathode spot of the 2.2-kW xenon arc (stationary mode), as obtained from the emission coefficient of the continuum at 1.31 μ (solid line), and by the Planck-Kirchhoff method from the emission–absorption profile of Xe i 10528 Å (broken line).

Fig. 7
Fig. 7

Experimental ξ(λ) factors for the xenon continuum compared with calculated values: (1) This paper, (2) Schlueter,13 (3) Biberman et al.16

Fig. 8
Fig. 8

Wavelength scan in the range 0.7–1.2 μ for the stationary (lower trace) and flashed xenon arc (both at same gain and with 0.1-mm slit widths) and the reference tungsten strip lamp (1-mm slit widths).

Fig. 9
Fig. 9

Measured spectral radiance of the cathode spot of the high pressure xenon arc: in the stationary mode at 2.2 kW power (lower trace), and flashed for 0.1 sec at 10 kW (upper trace).

Tables (1)

Tables Icon

Table I Emission and Absorption Measurements and Average Temperature (Planck-Kirchhoff) of the Cathode Spot of the Xenon Arc in the Stationary Mode

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ = 1.63 × 10 - 31 [ ξ ( λ ) / λ 2 ] ( n e 2 / T 1 2 ) ,
n e = 5.953 × 10 18 ( Q 1 / Q 0 ) 1 2 P 1 2 T 1 4 exp ( - E i / 2 k T ) .
e λ Xe = 2.57 × 10 7 ξ ( λ ) λ 2 P exp ( - 140 , 760 / T ) .
N λ 0 = - R R λ ( r ) d r = C ξ ( λ ) λ 2 - R R n e 2 [ P , T ( r ) ] T 1 2 ( r ) d r .
L [ N λ 0 / λ ( r = 0 ) ] .
log ( 1 Δ ν Δ v τ ( ν ) d ν ) 1 Δ ν Δ ν log τ ( ν ) d ν ,
N λ 0 = 178 [ ξ ( λ ) / λ 2 ] .

Metrics