Abstract

The reconstruction from an integral photograph is pseudoscopic. It is usually inverted into an orthoscopic image by a second recording and reconstruction process. Some schemes are described which perform this inversion without the need for a second recording. All schemes use some form of autocollimating screen, i.e., a screen which reflects a ray of light back onto itself. The inversion can either be formed on the scene (inversion from orthoscopic to pseudoscopic) before the integral photograph is recorded or it can be performed on the pseudoscopic reconstruction. Some theoretical considerations concerning the optimum screen are given. The relation between these schemes and integral photography, image dissection, and a previously proposed scheme are given.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, J. Phys. 7, 821 (1908).
  2. H. E. Ives, J. Opt. Soc. Amer. 21, 171 (1931).
    [CrossRef]
  3. R. V. Pole, Appl. Phys. Lett. 10, 20 (1967).
    [CrossRef]
  4. J. D. Tomlinson, personal communication.
  5. C. B. Burckhardt, J. Opt. Soc. Amer. 58, 71 (1968).
    [CrossRef]
  6. A. de Lassus Saint Genies, Brit. Pat.455, 220; U. S. Pat.2,139,855.

1968 (1)

C. B. Burckhardt, J. Opt. Soc. Amer. 58, 71 (1968).
[CrossRef]

1967 (1)

R. V. Pole, Appl. Phys. Lett. 10, 20 (1967).
[CrossRef]

1931 (1)

H. E. Ives, J. Opt. Soc. Amer. 21, 171 (1931).
[CrossRef]

1908 (1)

G. Lippmann, J. Phys. 7, 821 (1908).

Burckhardt, C. B.

C. B. Burckhardt, J. Opt. Soc. Amer. 58, 71 (1968).
[CrossRef]

de Lassus Saint Genies, A.

A. de Lassus Saint Genies, Brit. Pat.455, 220; U. S. Pat.2,139,855.

Ives, H. E.

H. E. Ives, J. Opt. Soc. Amer. 21, 171 (1931).
[CrossRef]

Lippmann, G.

G. Lippmann, J. Phys. 7, 821 (1908).

Pole, R. V.

R. V. Pole, Appl. Phys. Lett. 10, 20 (1967).
[CrossRef]

Tomlinson, J. D.

J. D. Tomlinson, personal communication.

Appl. Phys. Lett. (1)

R. V. Pole, Appl. Phys. Lett. 10, 20 (1967).
[CrossRef]

J. Opt. Soc. Amer. (2)

H. E. Ives, J. Opt. Soc. Amer. 21, 171 (1931).
[CrossRef]

C. B. Burckhardt, J. Opt. Soc. Amer. 58, 71 (1968).
[CrossRef]

J. Phys. (1)

G. Lippmann, J. Phys. 7, 821 (1908).

Other (2)

J. D. Tomlinson, personal communication.

A. de Lassus Saint Genies, Brit. Pat.455, 220; U. S. Pat.2,139,855.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Autocollimating screen formed by an array of lenslets and a reflector in the back focal plane.

Fig. 2
Fig. 2

Arrangement for the formation of a pseudoscopic image or the inversion of a pseudoscopic reconstruction.

Fig. 3
Fig. 3

Arrangement for the inversion of a pseudoscopic reconstruction with the autocollimating screen in the central plane of the reconstruction.

Fig. 4
Fig. 4

Photograph of a hologram reconstruction inverted with FE–582 sheeting in the arrangement of Fig. 3.

Fig. 5
Fig. 5

Photograph of the real image formed on a diffuse reflector.

Fig. 6
Fig. 6

Photograph of a hologram reconstruction inverted with a fly’s-eye lens (0.4-mm × 0.4-mm lenslets) and mirror in the arrangement of Fig. 3.

Fig. 7
Fig. 7

Photograph of the real pseudoscopic image of a subject located 36 cm away from the fly’s-eye lens (0.8 mm × 0.8 mm lenslets).

Fig. 8
Fig. 8

Space behind one lenslet.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

D opt = 1.24 a ( λ / b ) 1 2 ,             for a b .
A ( w ) = K ξ = - D / 2 + D / 2 exp ( j k ξ 2 / 2 c ) × exp [ - ( j k / 2 f ) ( ξ 2 - 2 w ξ + w 2 ) ] d ξ .
A ( w ) = K ξ = - D / 2 D / 2 exp ( - j k ξ 2 / 2 b ) exp ( j k w ξ / f ) d ξ .
I ( w ) = A ( w ) A * ( w ) = C exp ( - 4 w 2 / u I 2 ) .
u I 2 = 0.415 ( D 2 f 2 / b 2 ) + 0.981 ( λ 2 f 2 / D 2 ) .
D opt = 1.24 ( λ b ) 1 2 .
I ( x ) = C exp ( - 4 x 2 / u 0 2 ) ,
u 0 2 = ( b 2 / f 2 ) u I 2 ,
I tot ( x ) = C exp ( - 4 x 2 / u tot 2 ) ,
u tot 2 = 2 u 0 2 .
u tot = 1.59 ( λ b ) 1 2 ,             for D = D opt .

Metrics